Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Model AICTE Curriculum Third Semester Computer Science and Engineering

				٦	Teaching Scheme Examination Scheme												
				Ho	ours weel	per k				THEO	RY				PRAC	TICAL	
Course Category	Course Code	BoS	Course Title	L	т	Р	Number of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Ma Mai Sessio	x. rks onal	Total	Min. Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min. Passing Marks
BSC/ESC /HSMC	SE101CS	S&H	Applied Mathematics- III	2	0	0	2	3	80	10	10	100	40	-	-	-	-
PCC	SE102CS	Computer	Data structure & Algorithms	3	0	0	3	3	80	10	10	100	40	-	-	-	-
PCC	SE103CS	Computer	Computer Organization & Architecture	3	0	0	3	3	80	10	10	100	40	-	-	-	-
ESC	SE104CS	Electronics	Digital Electronics	3	0	0	3	3	80	10	10	100	40	-	-	-	-
HSMC	SE105CS	HSMC	Effective Technical Communication in English	3	0	0	3	3	80	10	10	100	40	-	-	-	-
PCC	SE106CS	Computer	Data structure & Algorithms	0	0	2	2	-	-	-	-	-	-	25	25	50	25
PCC	SE107CS	Electronics	Digital Electronics	0	0	2	2	-	-	-	-	-	-	25	25	50	25
PCC	SE108CS	Computer	Computer Workshop	0	0	2	2	-	-	-	-	-	-	25	25	50	25
MC	SE109CS	S&H	Environmental Sciences	-	-	-	0	-	-	-	-	-	-	-	-	-	-
			-												-		
				14	0	06	20	-									
					20		20					500				150	
				650													

Course and Examination Scheme with Model AICTE Curriculum Fourth Semester Computer Science and Engineering

Course Category					Teach	ing S	cheme					Exami	nation Sch	eme			
				He	ours p week	er				THEO	RY	1			PRACT	ICAL	
	Course Code	BoS	Course Title	L	т	Ρ	Number of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Ma Mai Sessio	rks onal	Total	Min. Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min. Passing Marks
DCC	6520166	6911	Digorata Mathamatiag	2	1	0	4	2		MSE	IE 10	100	40				
PCC	SEZUICS	S&H	Discrete Mathematics	3	1	0	4	3	80	10	10	100	40	-	-	-	-
РСС	SE202CS	Computer	Algorithms	3	0	0	3	3	80	10	10	100	40	-	-	-	-
PCC	SE203CS	Computer	Operating Systems	3	0	0	3	3	80	10	10	100	40	-	-	-	-
ESC	SE204CS	Computer	Object Oriented Programming	3	0	0	3	3	80	10	10	100	40	-	-	-	-
HSMC	SE205CS	S&H	Finance & Accounting	3	0	0	3	3	80	10	10	100	40	-	-	-	-
PCC	SE206CS	Computer	Design & Analysis of Algorithms	0	0	2	2	-	-	-	-	-	-	25	25	50	25
PCC	SE207CS	Computer	Operating Systems	0	0	2	1	-	-	-	-	-	-	25	25	50	25
PCC	SE208CS	Computer	Object Oriented Programming	0	0	2	1	-	-	-	-	-	-	25	25	50	25
	·		· · · ·				·	·	•			·	•	÷			
				15	01	06	20										
					22		20					500				150	
													650				

Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Model AICTE Curriculum Third Semester Computer Science and Engineering

Course Code:SE102CSTitle of the Course:Data Structure and Algorithms

Course Scheme					Evaluation Scheme (Theory)					
Lectur	Tutoria	Practica	Periods/wee	Credit	Duration of paper,	MS	Ι	ES	Tota	
e	1	1	k	S	hrs	Е	Е	Е	1	
03	00		03	03	03	10	1 0	80	100	

Unit	Contents	Hours
Ι	Introduction:	08
	Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion,	
	deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade	
	off. Searching: Linear Search and Binary Search Techniques and their complexity analysis.	
II	Linked Lists:	08
	Singly linked lists: Representation in memory, Algorithms of several operations: Traversing,	
	Searching, Insertion into, Deletion from linked list; Linked representation of Stack and	
	Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular	
	Linked Lists: all operations their algorithms and the complexity analysis.	
III	Stacks and Queues:	08
	ADT Stack and its operations: Algorithms and their complexity analysis, Applications of	
	Stacks: Expression Conversion and evaluation – corresponding algorithms and complexity	
	analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue;	
	Operations on each types of Queues: Algorithms and their analysis.	0.0
IV	Trees:	08
	Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree,	
	Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with	
	complexity analysis. Applications of Binary Irees. B Iree, B+ Iree: definitions, algorithms	
V	and analysis.	00
v	Sorting and Hasning: Objective and properties of different sorting algorithms: Selection	08
	Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort, Performance and	
	Comparison among an ure methous, masning.	
	Graph. Basic Terminologies and Representations Graph search and traversal algorithms and	
	complexity analysis	
	Total	40
1	Total	

Text Book/s:

1. "Fundamentals of Data Structures", Illustrated Edition by Ellis Horowitz, Sartaj Sahni, Computer Science Press.

Reference Book/s:

- 1. "Algorithms, Data Structures, and Problem Solving with C++", Illustrated Edition by Mark Allen Weiss, Addison-Wesley Publishing Company
- 2. "How to Solve it by Computer", 2nd Impression by R. G. Dromey, Pearson Education.

Course Code: SE103CS Title of the Course: Computer Architecture and Organization

Course Scheme					Evaluation Scheme (Theory)					
Lectur	Tutoria	Practica	Periods/wee	Credit	Duration of paper,	MS	Ι	ES	Tota	
e	1	1	k	S	hrs	Е	Е	Е	1	
03	00		03	03	03	10	1 0	80	100	

Unit	Contents	Hours
Ι	Basic Structure of Computer Hardware and Software: Functional Units, Basic Operational concepts, Bus Structures, Software, Distributed Computing. Addressing Methods and Machine Program Sequencing : Memory Locations, Addresses and Encoding of Information, Main Memory Operations, Instructions and Instruction Sequencing, Addressing Modes, Assembly Language, Stacks, Subroutine.	08
II	The processing Unit: Some Fundamental Concepts, Execution of a complete Instruction, Sequencing of Control Signals. Computer peripherals : I/O Devices. Processors: Introduction to RISC Processors, Array Processors, Loosely coupled, Tightly coupled Systems.	08
III	Microprogrammed Control: Microinstructions, Grouping of control signals, Micro Program Sequencing, Micro instructions with next address field, Perfecting Microinstructions, Emulation, Bit Slices, Introduction to Microprogramming	08
IV	Arithmetic : Number Representation, Addition of Positive Numbers, Logic Design for Fast Adders, Addition and Subtraction, Arithmetic and Branching Conditions, Multiplications of positive numbers, Signed – Operand Multiplication, Fast Multiplication	08
V	The Main Memory: Some Basic Concepts, Semiconductor RAM Memories, Memory System Considerations, Semiconductor ROM Memories, Multiple module Memories and Interleaving, Cache Memories, Virtual Memories, Memory Management Requirements	08
	Total	40

Text Book/s:

- V.Carl Hamacher, Zvonko G. Varanesic and Safat G. Zaky, "Computer Organization", V edition, McGraw-Hill Inc, 1996.Organisation", V edition, McGraw-Hill Inc, 1996
 Computer Organization & Architecture 7e By william Stallings PHI, edition

Reference Book/s:

1. Computer System architecture: M. Morris Mano PHI, edition

Course Code:SE104CSTitle of the Course:Digital Electronics

		Course Sch	neme	Evaluation Scheme (Theory)					
Lectur	Tutoria	Practica	Periods/wee	Credit	Duration of paper,	MS	Ι	ES	Tota
e	1	1	k	S	hrs	Е	Е	Е	1
03	00		03	03	03	10	1 0	80	100

Unit	Contents	Hours
Ι	Fundamentals of Digital Systems and logicfamilies:	08
_	Digital signals, digital circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations,	
	Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal	
	hexadecimal number, binary arithmetic, one's and two's complements arithmetic, codes,	
	error detecting and correcting codes, characteristics of digital ICs, digital logic families, TTL,	
	Schottky TTL and CMOS logic, interfacing CMOS and TTL, Tri-statelogic.	
II	Combinational DigitalCircuits:	08
	Standard representation for logic functions, K-map representation, simplification of logic	
	functions using K-map, minimization of logical functions. Don't care conditions,	
	Multiplexer, De-Multiplexer/Decoders, Adders, Subtractors, BCD arithmetic, carry look	
	ahead adder, serialadder, ALU, elementary ALU design, popular MSI chips, digital	
	comparator, parity checker/generator, code converters, priority encoders, decoders/drivers	
	for display devices, Q-M method of function realization.	
III	Sequential circuits and systems:	08
	A 1-bit memory, the circuit properties of Bistable latch, the clocked SR flip flop, J- K-T and	
	D types flipflops, Applications of flipflops, shiftregisters, applications of shift registers, serial	
	to parallel converter, parallel to serial converter, ring counter, sequence generator,	
	ripple(Asynchronous) counters, synchronous counters, counters design using flipflops,	
	special counter IC's, asynchronous sequential counters, applications of counters.	
IV	A/D and D/A Converters:	08
	Digital to analog converters: weighted resistor/converter, R-2R Ladder	
	D/Aconverter, specifications for D/A converters, examples of D/A converter ICs, sample and	
	hold circuit, analog to digital converters: quantization and encoding, parallel comparator	
	A/Deconverter, successive approximation A/D converter, counting A/D converter, dual slope	
	A/D converter, A/D converters avample of A/D converter/Ca	
V	Specifications of A/D converters, example of A/D converterics	00
v	Semiconductor memories and programmable logic devices:	08
	characteristics of memories sequential memory read only memory (ROM) read and write	
	memory (RAM) content addressable memory (CAM) charge de coupled device memory	
	(CCD) commonly used memory chins ROM as a PLD Programmable logic array	
	Programmable array logic complex Programmable logic devices (CPLDS) Field	
	Programmable Gate Array (FPGA).	
	Total	40

- 1. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.
- 2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.
- 3. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

Course Code:SE105CSTitle of the Course:Effective Technical Communication in English

		Course Sch	neme	Evaluation Scheme (Theory)					
Lectur	Tutoria	Practica	Periods/wee	Credit	Duration of paper,	MS	Ι	ES	Tota
e	1	1	k	S	hrs	Е	E	Е	1
03	00		03	03	03	10	1 0	80	100

Unit	Contents	Hours
Ι	Definition and Features of Technical communication: Definition and features of technical communication (precision, relevance, format, style, use of visual aids), Differences between general writing and technical writing, Types of technical communication (oral and written)	08
II	Technical Writing-I (Official correspondence): Emails, IOM, Business letters, Business proposals.	08
III	Technical writing-II (Reports): Project report, Feasibility report, Progress report, Evaluation report.	08
IV	Technical writing- III (Manuals): Types of manuals, User manual, Product manual, Operations manual.	08
V	Information Transfer and Presentations: Non-verbal (bar diagram, flow chart, pie chart, tree diagram) to verbal (writing), Verbal (written) to non-verbal, Important aspects of oral and visual presentations.	08
	Total	40

Reference Book/s:

- 1. Raman, Meenakshi & Sharma, Sangeeta. (2015). Technical Communication: Principles and Practice (3rd ed.). New Delhi, OUP.
- 2. Rizvi, Ashraf, M. (2017). Effective Technical Communication (2nd ed.). New Delhi, Tata McGraw Hill Education.
- Sharma, R. C., & Mohan, Krishna. (2017). Business Correspondence and Report Writing: A Practical Approach to Business & Technical Communication (4th ed.). New Delhi, Tata McGraw Hill Education. Faculty of Engineering, O.U. AICTE Model Curriculum with effect from Academic Year 2019-20 28
- 4. Tyagi, Kavita & Misra, Padma. (2011). Advanced Technical Communication. New Delhi, PHI Learning.
- 5. Jungk, Dale. (2004). Applied Writing for Technicians. New York, McGraw-Hill Higher Education.

Course Code:SE106CSTitle of the Course:Data Structure and Algorithms

		Course Sek			Ev	aluation Scl	neme
		Course Ser	lenne			(Laboratory	y)
Lectur	Tutoria	Practica	Periods/wee	Credit	TW	DOE	Total
e	1	1	k	S	1 vv	FUE	Total
		01	02	02	25	25	50

	List of Practicals
Ι	1 ^s & 2 nd Practical should be based on Linear & Circuler Linked list resp.
II	3 rd & 4 th Practical should be based on Stacks & Queues.
III	5 th & 6 th Practical should be based on Trees
IV	7 th & 8 th Practical should be based on Arrays and Searching & Sorting techniques resp.
V	9 th & 10 th Practical should be based on Graphs.

Course Code:SE107CSTitle of the Course:Digital Electronics

	Course Schome					Evaluation Scheme			
Course Scheme					(Laboratory	<i>(</i>)			
Lectur	Tutoria	Practica	Periods/wee	Credit	TW	DOE	Total		
e	1	1	k	S	1 vv	FUE	Total		
		01	02	02	25	25	50		

List of Practicals
Hands-on experiments related to the course contents of SE104

Course Code:SE108CSTitle of the Course:Computer Workshop

	Course Scheme					Evaluation Scheme			
Course Scheme					(Laboratory	y)			
Lectur	Tutoria	Practica	Periods/wee	Credit	TW	DOE	Total		
e	1	1	k	S	1 W	PUE	Totai		
		01	02	02	25	25	50		

	List of Practicals
1	Introducing a new object oriented programming, Python
2	Implement basic syntax in python.
3	Enabling students to learn Big Data, Machine Learning etc.
4	To learn programs in MATLAB environment
5	To handle Functions, Polynomials by using MATLAB commands
6	Ability to solve any Mathematical functions
7	To plot Graphics (2-D) easily and effectively

Course Code:SE109CSTitle of the Course:Environmental Sciences

	Course Sahama					Evaluation Scheme			
Course Scheme					(Laboratory	<i>y</i>)			
Lectur	Tutoria	Practica	Periods/wee	Credit	TW	DOE	Total		
e	1	1	k	S	1 W	PUE	Totai		
			00	00	00	00	00		

	List of Practicals
1	Create awareness and impart basic knowledge about the environment and its allied problems
2	Know the functions of ecosystems
3	Understand importance of biological diversity
4	Study different pollutions and their impact on environment.
5	Know social and environment related issues and their preventive measures.

Course Code:SE201CSTitle of the Course:Discrete Mathematics

		Course Sch	Evaluation Scheme (Theory)						
Lectur	Tutoria	Practica	Periods/wee	Credit	Duration of paper,	MS	Ι	ES	Tota
e	1	1	k	S	hrs	Е	Е	Е	1
03	01		04	04	03	10	1 0	80	100

Unit	Contents	Hours
Ι	Set Theory: Basic Concepts of set theory, The power set, Some operations on sets, Venn diagram, Basic set identities, Cartesian product, Properties of binary relation in a set, Matrix and the Graphs of a relation, Equivalence relation, Partial order relation, comp ability, Composition of binary relation, Function, Composition of functions, Inverse Functions, Characteristics Function of a set.	08
II	Mathematical Logic: Statements Connectives: Negotiation, Conjunction, Disjunction, Conditional and biconditional, statement formulas and truth table. Tautologies, Equivalence of formulas, Duality laws, Tautological implication. Theory of inference for statement calculus, Theory of inference for Predicate calculus.	08
III	Algebraic Structures: Semigroups and Monoids, Groups (definitions and examples) Cyclic groups, Permutation groups, subgroups and Homomorphisms. Cosets and Lagranges theorem, Normal subgroups, Rings (definition and examples), subrings, Ring Homomorphisms, Ideals and Quotient Rings, Polynomial Ring, finite fields and integral domain	08
IV	Lattice Theory & Boolean Algebra: Lattices as partial ordered set (definition and examples), some problems of lattices as algebraic system, Sub lattices, Direct Product, Homomorphism, Some special lattices, Boolean algebra (definition and examples), application to switching circuits.	08
V	Graph Theory: Basic concepts of Graph Theory, Basic definitions, Paths, Rechability and	08

connectedness, Matrix representation of Graphs, Trees, Tree Searching, Undirected Trees,	
Minimal Spanning Trees.	
Total	40

- 1. Discrete Mathematics Structures with application to Computer Science by J.P.Trembly & R. Manohar
- 2. Discrete Maths for Computer Scientists & Mathematicians (Chapter 2,5,7) by J.L.Mott, A. Kandel, T.P.Baker
- 3. Discrete Mathematics by J.K.Sharma, Macmillan Publishers India

Reference Book/s:

- 1. Elements of Discrete Mathematics by C.L.Liu., Tata McGraw-Hill, 2008.
- 2. Discrete Mathematics by Lipschutz, McGraw Hill Professional, 2007
- 3. Discrete Mathematics by R. Johnsonbaugh., 9th edition, John Wiley & Sons, 2006

Course Code:SE202CSTitle of the Course:Design & Analysis of Algorithms

		Course Sch	Evaluation Scheme (Theory)						
Lectur	Tutoria	Practica	Periods/wee	Credit	Duration of paper,	MS	Ι	ES	Tota
e	1	1	k	S	hrs	Е	Е	Е	1
03	00		03	03	03	10	1 0	80	100

Unit	Contents	Hours
Ι	Introduction: Analyzing and Designing algorithm, Asymptotic notations: Big Oh, Omega, Theta notation, Average, Best and Worst case analysis of algorithms for Time and Space complexity, Amortized Analysis, Solving Recurrence Equations using Substitution method, Recursion-Tree Method and Master method.	08
II	Divide-and-Conquer and Greedy Strategy: Binary Search, Merge and Quick Sort, The maximum-subarray problem, Strassen's algorithm for matrix multiplication. Greedy MethodGeneral Strategy, Knapsack problem, Job sequencing with deadlines problem, minimum cost spanning trees: Prim's algorithm, Kruskal's algorithm, Single source shortest path: BellmanFord algorithm, Dijkstra's algorithm, Difference constraints and shortest paths, Huffman Coding etc.	08
III	Dynamic Programming: Basic strategy, all pair shortest path: Shortest paths and matrix multiplication, Floyd-Warshall algorithm, Single source shortest paths, optimal binary search trees, Matrix-chain Multiplication, Elements of dynamic programming, traveling salesman problem	08

IV	Backtracking and Hash tables: The general method, 8-Queen's problem, Sum of subsets,	08
	Graph Coloring, Hamiltonian Cycle, Graph Coloring, Hash tables, Hash functions, Open	
	addressing.	
V	NP-Hard And NP-Complete Problems: Basic concepts, Non-Deterministic algorithm, The	08
	Classes NP-Hard and NP-complete. NP-Complete problems-Satisfiability problem, vertex cover problem. NP-Hard graph problem, scheduling problem, code generation problems,	
	Simplified NP Hard Problems.	
	Total	40
		1

- T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein, "Introduction to Algorithms", Third Edition, PHI.
 Ellis Horowitz, Sartaj Sahani, Rajasekaran, "Fundamentals of Computer Algorithms", Second Edition, Universities Press.

Reference Book/s:

- 1. V. Aho and J.D. Ullman, "Design and Analysis of Algorithms", Addison Wesley
- 2. Brassard, Bratley, "Fundamentals of Algorithms", PHI

Course Code: SE203CS Title of the Course: Operating Systems

Course Scheme				Evaluation Scheme (Theory)					
Lectur	Tutoria	Practica	Periods/wee	Credit	Duration of paper,	MS	Ι	ES	Tota
e	1	1	k	S	hrs	Е	Е	Е	1
03	00		03	03	03	10	1 0	80	100

Unit	Contents	Hours
Ι	Introduction, basic h/w support necessary for modem operating systems -Services provided by OS, system programs and system calls - brief discussions of evolution of OS - real time and distributed systems: a brief overview of issues. Processes and 3 levels of scheduling - process control block and context switch -goals of scheduling and different scheduling algorithms - threads: user level and kernel level.	08
Π	CPU Scheduling: Review of multiprogramming, concepts, scheduling concepts, scheduling algorithms, algorithm evaluation, multiple processor scheduling. Process cooperation and synchronization, mutual exclusion and implementation, semaphores, conditional critical regions and monitors -classical inter - process communication problems - message passing.	08
III	Deadlocks and strategies for handling them - protection and security issues - access lists, capabilities, and cryptographic techniques - introduction to distributed systems. File systems, user interface - disk space management and space allocation strategies -examples from	08

	UNIX, DOS, Windows etc - directory structures - disk caching - file system consistency and logs -disk arm scheduling strategies. Disk scheduling: physical characteristics, FCFS scheduling, SSTF scheduling, SCAN, CSCAN, Selecting a disk-scheduling algorithm, sector queuing.	
IV	Memory management techniques - contiguous and non-contiguous -paging and segmentation - translation look aside buffers (TLB) and overheads - virtual memory and demand paging - page faults and instruction restart - problems of large address spaces - page replacement algorithms and working sets - miscellaneous issues.	08
V	Protection and Security: Goal of Protection, Mechanism and policies, domain of protection, access matrix, implementation of access matrix, dynamic protection structures, revocation, existing systems, language based protection, protection problems security.	08
	Total	40

- 1. Modern Operating Systems Tanenbaum, Pearson Edn. 2nd edn.
- 2. Operating System concepts Silberchatz & Galvin, Addison Wesley, 2nd Edn.
- 3. Operating System Concepts & Design By Milan Milenkovic (TMH)

Course Code:SE204CSTitle of the Course:Object Oriented Programming

Course Scheme				Evaluation Scheme (Theory)					
Lectur	Tutoria	Practica	Periods/wee	Credit	Duration of paper,	MS	Ι	ES	Tota
e	1	1	k	S	hrs	Е	E	Е	1
03	00		03	03	03	10	1 0	80	100

Unit	Contents	Hours
Ι	Principles of Object-Oriented Programming, Beginning with C++, Tokens, Expressions and Control Structures	08
Π	Functions in C++, Function protopying, call by reference, Return by reference, Inline Function, Default Arguments, Function Overloading, Friend and Virtual Function, Classes and Objects, Defining Member Functions, Arrays within a class, Memory allocation for Objects, Arrays of Objects, Objects as Function Arguments, Friend Functions, Pointers to members	08
III	Constructors and Destructors, Parameterized constructors, Constructors with Default Arguments,	08

	Dynamic Initialization of Objects, Copy constructors, Dynamic constructors, Constructing Two- dimensional Arrays, const Objects, Operator Overloading and Type Conversions, Inheritance: Extending Classes, Types of inheritance, Virtual Base Classes, Abstract Classes, Constructors in Derived Classes, Member Classes	
IV	Pointers, Pointers to Objects, this Pointer, Pointers to Derived Classes, Virtual Functions, Pure Virtual Functions and Polymorphism	08
V	Managing Console I/O Operations, Working with Files, Templates	08
	Total	40

- 1. Object Oriented Programming with C++ by E Balagurusamy McGraw-Hill
- 2. Let Us C++ by Y. kanetkar

Reference Book/s:

- 1. C++ : The Complete reference , by Herbert Schildt , 4thedition, Tata McGraw Hill
- 2. Mastering C++ by K R Venugopal & Prasad, Tata McGray Hill

Course Code:SE205CSTitle of the Course:Finance & Accounting

Course Scheme				Evaluation S	cheme (Theo	ory)		
Lectur	Tutoria	Practica	Periods/wee	Credit	Duration of paper,	MS	Ι	ES	Tota
e	1	1	k	S	hrs	Е	Е	Е	1
03	00		03	03	03	10	1 0	80	100

Unit	Contents	Hours
Ι	Basics of Accounting: Financial Accounting–Definition- Accounting Cycle – Journal - Ledger and Trial Balance-Cash Book-Bank Reconciliation Statement (including Problems)	08
II	Final Accounts: Trading Account-Concept of Gross Profit- Profit and Loss Account-Concept of Net ProfitBalance Sheet (including problems with minor adjustments)	08
III	Financial System and Markets: Financial System-Components-Role-Considerations of the investors	08

	and issuers- Role of Financial Intermediaries. Financial Markets-Players- Regulators and instruments - Money Markets Credit Market- Capital Market (Basics only)	
IV	Basics of Capital Budgeting techniques: Time Value of money- Compounding- Discounting- Future Value of single and multiple flows- Present Value of single and multiple Flows- Present Value of annuitiesFinancial Appraisal of Projects- Payback Period, ARR- NPV, Benefit Cost Ratio, IRR (simple ratios).	08
V	Financial statement Analysis: Financial Statement Analysis- Importance-Users-Ratio Analysis- liquidity, solvency, turnover and profitability ratios.	08
	Total	40

Reference Book/s:

- 1. Satyanarayana. S.V. and Satish. D., Finance and Accounting for Engineering, Pearson Education
- 2. Rajasekharan, Financial Accounting, Pearson Education
- 3. Sharma. S.K. and Rachan Sareen, Financial Management, Sultan Chand
- 4. Jonathan Berk, Fundamentals of Corporate Finance, Pearson Education
- 5. Sharan, Fundamentals of Financial Management, Pearson Education

Course Code:SE206CSTitle of the Course:Design and Analysis of Algorithms

		Course Sek	Evaluation Scheme				
Course Scheme						(Laboratory	<i>(</i>)
Lectur	Tutoria	Practica	Periods/wee	Credit	TW	DOE	Total
e	1	1	k	S	1 vv	FUE	Total
		01	02	02	25	25	50

	List of Practicals
	The student is expected to perform 10 practicals based on following topics.
1	Practical No. 1 & 2 should be based on Unit No.I

2	Practical No.3 & 4 should be based on Unit No. 2
3	Practical No. 5 & 6 should be based on Unit No. 3
4	Practical No. 7 & 8 should be based on Unit No. 4
5	Practical No. 9 & 10 should be based on Unit No. 5

Course Code:SE207CSTitle of the Course:Operating Systems

Course Saharua				Evaluation Scheme			
Course Scheme				(Laboratory)			
Lectur	Tutoria	Practica	Periods/wee	Credit	TW	DOE	Total
e	1	1	k	S	1 vv	FUE	Total
		01	02	02	25	25	50

List of Practicals
The student is expected to perform 10 practicals based on following topics.

1	Practical no. 1 & 2 should be based on CPU scheduling algorithms like FCFS,SJF,RR, Priority etc for
	multiprogramming system
2	Practical no. 3&4 should be based on process synchronization problems.
3	Practical no.5 &6 should be based on deadlock detection problems .
4	Practical no. 7 should be based on disk scheduling
5	Practical no. 8, 9 & 10 should be based on memory management.

Course Code:SE208CSTitle of the Course:Object Oriented Programming

Course Sahama					Evaluation Scheme		
Course Scheme				(Laboratory)			
Lectur	Tutoria	Practica	Periods/wee	Credit	TW	DOE	Total
e	1	1	k	S	1 VV	FUE	Total
		01	02	02	25	25	50

List of Practicals

	The student is expected to perform 10 practicals based on following topics.
1	Write a Simple C++ program without using Class & Object
2	Write a program using Class & Object.
3	Write a program using Function Overloading.
4	Write a program using Operator Overloading.
5	Write a program using Inheritance.
6	Write a program using Virtual Function.
7	Write a program using Friend Function.
8	Write a program using Constructor.
9	Write a program using Dynamic Initialization of Objects.
10	Write a program using Copy Constructor.
11	Write a program using Virtual Base Class.
12	Write a program using Abstract Class.
13	Write a program for file handling