SYLLABUS

SEVENTH SEMESTER B.E. (E&P/ELECTRICAL/EEE)

GONDWANA UNIVERSITY, GADCHIROLI

(With effect from 2015-16)

COURSE : SEVENTH SEMESTER B.E. (Electrical/ Electronics & Power/ EEE) SIXTH SEMESTER B.E. (Electronics / Electronics & (Tele) Communication)

SUBJECT: POWER ELECTRONICS

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
04	01	02	07	06

	Evaluation System					
Theory					Practical	
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	10	80	100	25	25	50

Basics in Power Electronics Engineerir Development of Power Controllers, Working Principle & Characteristi Thyristor Family, Two Transistor model of SCR, Gate Characteristic, T other ratings of SCRs , Relaxation Oscillators using UJT, Basic Firing Circu	ics of different Power Controllers, Furn On , Turn Off Mechanisms & cuits for SCR, Application of SCR in	12
Thyristor Family, Two Transistor model of SCR, Gate Characteristic, T other ratings of SCRs , Relaxation Oscillators using UJT, Basic Firing Circ	Turn On , Turn Off Mechanisms & cuits for SCR, Application of SCR in	12
Thyristor Family, Two Transistor model of SCR, Gate Characteristic, T other ratings of SCRs , Relaxation Oscillators using UJT, Basic Firing Circ	cuits for SCR, Application of SCR in	12
other ratings of SCRs , Relaxation Oscillators using UJT, Basic Firing Circ	cuits for SCR, Application of SCR in	
	OLUSING IRIA(- DIA(Basic Firing	
obtaining Logic Gates, Flip Flop and Circuit Breaker, AC Power contr		
Circuits for SCR.		
Power Transistor, Power MOSFET & IGBT (Basic properties, characterist	tics, comparison & applications).	
Phase Controlled Rectification		
 Principle of Phase Control, Line Commutation, Single phase half w controlled with & without freewheeling diode with different types of L Half Controlled Bridge configurations, Development of expressions different loads, Dual Converter. Three Phase fully controlled & half controlled bridge circuits , Development 	oads, Effect of Source inductance, for mean current & voltage for	10
voltage .		
Inverters		
III Principle of Inversion, Various Techniques of Forced Commutation & the phase series Inverter, Single Phase Parallel Inverter, Single phase bridge		12
Circuits), Design of Filter.		
Three phase fully controlled bridge inverters in different modes (without	ut commutation Circuit), Design of	
complete firing circuit for Three phase Power Control Circuits.		

	Choppers & Cycloconverter	
IV	Principle of Working ,Types of Choppers, Oscillating Chopper, Jones & Morgan's Chopper, Multi Phase	
	Chopper, Step Up Chopper, AC Chopper, Need & Principle of Working of Cycloconverter using single	08

	phase bridge circuits.	
	Multiple Connection & Protection	
v	Need & methods of multiple connections of SCRs, Design of Equalizing Circuits, Firing Circuits during	08
	multiple connection, Gate protection, Over current & over voltage protections of SCR, Design of Snubber	00
	Circuit, Converter Faults.	
		50

(*Minimum 8 practical should be performed based on above syllabus)

Text Books

- (1) M.H. Rashid, "Power Electronics Circuits, Devives & Applications", Pearson Education
- (2) C.W. Lander, "Power Electronics", McGraw Hill
- (3) M. Ramamoorthy, "Thyristors & their Applications"
- (4) GK Dubey, Doradla, Singh, Joshi "Thyristorstorized Power Controllers", New Age International
- (5) Singh, Khanchandani, " Power Electronics", Tata McGraw Hill
- (6) SCR Manaual by General Electric

Reference Books

- (1) Philip T. Krein, "Elements of Power Electronics", Oxford University Press
- (2) Vedam Subrahmanyam, "Power Electronics", New Age International
- (3) MS Jamil Asghar, "Power Electronics", Prentice Hall of India
- (4) PC Sen, 'Modern Power Electronics", S. Chand Publishers
- (5) PS Bhimra, "Power Electronics", Khanna Publishers

COURSE : SEVENTH SEMESTER B.E. (Electrical/ Electronics & Power/ EEE)

SUBJECT: POWER SYSTEM PROTECTION & SWITCHGEAR

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
04	00	02	06	04+01=05

	Evaluation System					
Theory Practical						
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	10	80	100	25	25	50

UNIT	CONTENTS	HOURS	
	Fundamentals of Arc Interruption & Circuit Breaker		
I	Fundamentals of Arc Interruption: Current interruption in AC circuit breaker, high & low resistance	12	
	principles, arc interruption theories, arc voltage, recovery voltage, restriking voltage and RRRV, current		
	chopping, interruption of capacitive and inductive current,		
	Circuit breakers: C.B. ratings, Different media of arc interruption, Overview of circuit breakers,		
	construction and operation of air blast, SF6 and vacuum breakers.		
	Fundamentals of Protective Relaying and Over current Protection		
п	Fundamentals of Protective Relaying: Need for protective system, nature & causes of fault, types of		
	faults, effects of faults, evolution of protective relaying, zones of protection, primary & backup		
	protection, essential qualities of protective relaying. Trip circuit of circuit breaker, zones of protection.		
	Attracted armature and Induction disc type electromagnetic relays.		
	Operating principles of over current and directional over current relays, Various types of over current		
	relays as per their time-current characteristics, Current and time settings, Over current protective		
	schemes for transmission line and feeder protection		
	High voltage line protection		
	Introduction to distance protection, impedance relay, reactance relay and mho relay, Methods of relay		
III	settings Connections of impedance, reactance and mho relays, Effect of arc resistance, Line length and	08	
	source impedance and power swing on performance of distance relays. Realization of distance relays		
	using static relays. Carrier current protection.		

	Equipment protection	1
IV	Transformer Protection: Types of faults in transformer. Percentage differential protection in transformers, Inrush phenomenon, percentage differential relay with harmonic restraint. Restricted E/F protection. Incipient faults, buchholz relay. Phenomenon of over fluxing in transformer, protection against over fluxing. Generator Protection: Various faults, abnormal operating conditions- stator faults, longitudinal percentage differential scheme and transverse percentage differential scheme. Rotor faults- abnormal operating conditions, inter turn fault, unbalance loading, over speeding, loss of excitation, protection against loss of excitation using offset Mho relay, loss of prime mover. Digital protection scheme based on injection of sub-synchronous component in rotor circuit. C) Bus bar Protection: Differential protection of bus bars High impedance differential relay.	12
	Protection of induction motor: Abnormal operating conditions and causes of failures in induction motor, Protection against overloads, unbalance and single phasing, stator fault protection .	
v	Introduction to static and Microprocessor based Digital relay Introduction to static relay: Comparison of static and electromechanical relays, two input amplitude and phase comparator and their duality. Generation of various distance and over current relay characteristics using comparators.	08
	Microprocessor based Digital Relaying: Introduction, Digital logic communication, Direct relay to relay digital logic communication, Digital message security, Relay interface with utility, Microprocessor based over current, impedance, reactance and mho relay, Applications of Microprocessor based relays.	50
		50

(*Minimum 8 practical should be performed based on above syllabus)

Text Books

1. S. Rao, "Switchgear Protection and Power Systems", Khanna Publications

2. Y. G. Paithankar, S. R. Bhide, "Fundamentals of Power System Protection", Prentice Hall of India

3. Badri Ram, D. N. Vishwakarma, "Power System Protection and Switchgear", Tata McGraw Hill

4. Ravindra P.Singh, "Switchgear and Power System Protection" Prentice Hall of India

Reference Books

1.C.R.Mason, "Art and science of protective relaying" WileyEastern Ltd.

2. C.L.Wadhwa, Electrical Power Systems, New Age international (P) Limited, Publishers

3. B.L.Soni, Gupta, Bhatnagar, Chakrabarthy, A Text book on Power System Engineering, Dhanpat Rai & Co

.....

COURSE : SEVENTH SEMESTER B.E. (Electrical/ Electronics & Power/ EEE)

SUBJECT: ELECTRICAL ENERGY UTILIZATION

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
04	00	00	04	04

Evaluation System						
	Theory				Practical	
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	10	80	100			

UNIT	CONTENTS	HOURS
	ELECTRIC DRIVES	
	Advantages of electric drives. Characteristics of different mechanical loads. Types of motors used in	
I	electric drive. Electric braking, Plugging, Rheostatic & Regenerative braking. Methods of power transfer	10
	by direct coupling using devices like belt drive, gears, pulley drives etc. Selection of motors for different	
	types of loads: domestic, general workshop, textile mill, paper mill, steel mill, printing press, crane, lift	
	etc. Specifications of commonly used different motors e.g. squirrel cage, slip ring induction motors, AC	
	series motors.	
	ELECTRIC HEATING	
	Need of electrical heating. Heating methods: Resistance heating – direct and indirect resistance heating,	
II	electric ovens and their temperature range, properties of resistance heating elements, domestic water	10
	heaters and other heating appliances, thermostat control circuit. Induction heating; principle of core	
	type and coreless induction furnace. Electric arc heating; direct and indirect arc heating, construction,	
	working and applications of arc furnace. Other heating methods: Dielectric heating, Infra-red heating,	
	Microwave heating and their applications.	
	ELECTRIC WELDING	
	Need of electric welding. Welding method. Principles of resistance welding, types: spot, projection,	
III	seam and butt welding and welding equipment use. Principle of arc production, electric arc welding,	10
	characteristics of arc, carbon arc, metal arc, hydrogen arc welding method and their applications. Power	10
	supply required. Advantages of using coated electrodes, comparison between AC and DC arc welding,	
	Welding control circuits, Welding of aluminum and copper. Introduction of TIG, MIG Welding.	

	ILLUMINATION FUNDAMENTALS & METHODS	
	Nature of light, visibility spectrum curve of relative sensitivity of human eye and wave length of light.	
	Definition: Luminous flux, solid angle, luminous intensity, illumination, luminous Efficiency, depreciation	
IV	factor, coefficient of utilization, space to height ratio, reflection factor, glare, shadow, lux. Laws of	
	illumination -simple numerical. Different type of lamps, construction and working of incandescent and	
	discharge. lamps - their characteristics, fittings required for filament lamp, mercury vapour. Lamp,	
	fluorescent lamp, metal halide lamp, neon lamp. Calculation of number of light points for interior	
	illumination, calculation of illumination at different points, considerations involved in simple design	10
	problems. Illumination schemes; indoor and outdoor. Illumination levels. Main requirements of proper	
	lighting; absence of glare, contrast and shadow. General ideas about street lighting, flood lighting,	
	monument lighting and decorative lighting, light characteristics.	
	ELECTRIC TRACTION	
v	Advantages of electric traction. Different electric traction systems: DC and AC systems, diesel electric	
	system, types of services – urban, sub-urban, and main lines and their speed-time curves. Accessories	
	for track electrification; overhead capacitor wire, conductor rail system, current collector-pantograph.	
	Special features of traction motor.	
		10
	Train movement mechanics. Crest, average and schedule speed, Speed-time curves for different	
	services – trapezoidal and quadrilateral speed time curves. Calculations of tractive effort, power,	
	specific energy consumption for given run. Effect of varying acceleration and braking retardation,	
	adhesive weight and braking retardation adhesive weight and coefficient of adhesion. Introduction to	
	EMU and metro railways. Train movement mechanism.	
	Digital logic communication, Digital message security, Relay interface with utility, Microprocessor based	
	over current, impedance, reactance and mho relay, Applications of Microprocessor based relays.	
	TOTAL	50

TEXT BOOKS:

- 1. A First Course in Electrical Drives by S.K.Pillai, New Age International.
- 2. Art & Science of Utilization of electrical Energy by H. Partab, Dhanpat Rai & Sons.
- 3. Utilization of Electrical Energy by JB Gupta, Kataria Publications, Ludhiana.
- 4. A.Text Book. of Electrical Power by Dr. SL Uppal, Khanna Publications, Delhi
- 5. Modern Electric Traction by H Partap, Dhanpat Rai & Sons, Delhi

REFERENCE BOOKS:

- 1. Utilization of Electric Energy in SI Units by E.O.Taylor , Orient Longman Ltd.
- Utilization of Electrical Power including Electric drives and Electric traction by N.V.Suryanarayana, New Age International (P) Limited, Publishers, 1996.

COURSE : SEVENTH SEMESTER B.E. (Electrical/ Electronics & Power/ EEE)

SUBJECT: CONTROL SYSTEM-II

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01		04	04

Evaluation System						
Theory Practical						
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	10	80	100			

UNIT	CONTENTS	HOURS
	Compensation Technique	
Ι	Approaches and Preliminary consideration. Need for compensation. Common compensating network.	08
	Transfer function of Lag, Lead and Simple Lag-Lead network. Analysis of compensator in time and	
	frequency domain Bode Plot. Physical realization of compensators using Active and Passive elements.	
	State Space Analysis	
п	Review of state space analysis. Concept of diagonalization. Eigen values, Eigen vector, Diagonalization of	08
	system matrix with distinct and repeated Eigen values. Vander Monde matrix. Solution of homogenous	
	and non-homogenous state equation. State transition matrix, Its properties, Various method to	
	determine State transition matrix.	
	Design of Control System Using State Space Technique	
ш	Definition of controllability & observability, controllability & observability matrices, condition for	09
	controllability & observability from the system matrices in canonical form, Jordan canonical form, effect	
	of pole zero cancellation on the controllability & observability of the system, duality property. Pole	
	placement design by state feedback. State observer, design of full order observer	
	Non linear System Analysis	
IV	Introduction , Types of non-linearities, Characteristics of non linear control systems, Inherent &	16
	intentional non linearities, Introduction to describing function, Describing function of some common	
	non-linearities. Stability anlaysis, Limit cycle & stability of limit cycles.	
	Stability of Non Linear System	
	Introduction to phase plane method, Singular point. Stability from nature of singular point, Construction	
	of trajectory by Isoline & Delta method. Computation of time.	
	Sampled Data Control Systems	09
v	Representation of SDCS. Sample & Hold circuit, Z-Transform. Inverse Z-Transform & solution of	
	difference equation. 'Z' &'S' domain relationship. Stability by Bi-linear transformation & Jury's test.	
	Discrimination of continuous time state equation. Solution of Discrete time equation ,Controllability &	
	Observability of Discrete time system.	
	TOTAL	50

Text Books -

1. I.J. Nagrath ,M.Gopal "Contorl System Engineering", 5th Edition, New Age International Publishers.

Reference Books -

- 1. Benjamin C. Kuo, "Automatic Control Engineering", Prentice Hall of India Pvt. Ltd.
- 2. K. Ogata' " Modern Control Engineering", Prentice Hall of India Pvt. Ltd.
- 3. M. Gopal' "Digital Control Engineering", Wiley Eastern, 1988
- 4. M. N. Bandyopadhyan, " Control Engineering Theory and Practice", Prentice Hall of India

Ltd. Delhi

ELECTIVE-I

COURSE : SEVENTH SEMESTER B.E. (ELECTRICAL/ E&P/EEE)

SUBJECT: EHV AC-DC TRANSMISSION

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03		00	03	03

	Evaluation System						
	Theory Practical						
MSE	IE	ESE	TOTAL	TW	POE	TOTAL	
10	10	80	100				

UNIT	CONTENTS	HOURS
I	Need of EHV transmission lines, Power handling capacities. Voltages gradients: Electric field of point charge, sphere gap line-charge. Single and three phase lines, and bundled conductors. Maxwell's potential coefficients, Mangoldt Formula.	10
	Electrostatic and electromagnetic fields of EHV lines, electric shock and Threshold current Effect of high electrostatic field, measurement of electrostatic field, Induced voltages in insulated ground wires, electromagnetic interference.	10
	Corona: Types, critical disruptive voltages: Factors affecting corona, Methods for reducing corona power loss, corona current wave form, charge voltage diagram, audible noise and radio interference.	
	Comparison for EHVAC and HVDC systems. Conversion from AC to DC, Rectifiers, conversion from DC to AC, Inverters. Kind of DC link.	10
ш	Earth electrode and earth returns:- Introduction, objectives, location and configuration,	10
	Resistance of electrodes means of reducing earth electrode resistance, troubles caused by earth current and remedies.	
	Multi-terminal HVDC system: Introduction, 2 pole transmission, MTDC system with series and parallels connected converters, advantages and parallel connected converters, advantages and applications,	
	configurations and types.	
IV	Power flow control in HVDC system:- Constant current. Constant voltage, constant ignition and excitation angle control, control characteristics. Parallel operation of AC and DC links (Synchronous and Asynchronous links.) Reactive power requirement of HVDC Converter	10

	TOTAL	50
	and DC systems.	
	HVDC Sub-station Protection against over-voltages. Difference between insulation co- ordination of AC	
	protection symbol, HVDC line pole protections (fault clearing and re- energizing).	
	HVDC Substation protection against short-circuits: Introduction, fault clearing, protective zones,	
V	application of MRTB, Type of HVDC C.B, capability and characteristics of HVDC circuit breakers.	10
	HVDC circuit breakers: Introduction, construction, principle, switching energy, interruption of DC current,	

Books Recommended:

- 1. Rakesh Das Begmudre, Extra High Voltage AC Transmission Engineering, Wiley Eastern Limited.
- 2. S. Rao , EHVAC and DC transmission , Khanna Publications
- 3. K.R. Padiyar , HVDC Transmission System Wiley eastern Limited.
- 4. P. Kundur, HVDC Transmission , Mcgraw-hill publications
- 5. 5 C.L. Wadhwa , Electrical Power Systems New age International Pvt Limited.

ELECTIVE-I

COURSE : SEVENTH SEMESTER B.E. (ELECTRICAL/ E&P/EEE)

SUBJECT: ARTIFICIAL INTELLIGENCE

	Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
ĺ	03		00	03	03

Evaluation System						
Theory Practical						
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	10	80	100			

Unit	Contents	Hours
	Introduction to AI	10
I	Definition of AI, importance of AI, AI and related fields, task domains of AI, physical symbol system and it's hypothesis,	
	AI technique, Turing test, Knowledge and knowledge based systems.	
	Problems, problem spaces and search	10
	Defining a problem on a state space search, production systems and control strategies, deapth-first and breadth-first	
П	search, backtracking, problem characteristics, issues in the design of search problems, Heuristic search techniques:	
	generate and test, hill climbing, best-first search, problem reduction, constraint satisfaction, means-ends analysis.	
	Knowledge Representation	10
	Issues, representation and mapping approaches, introduction to proposition logic, knowledge representation using	
Ш	predicate logic, unification and resolution, Representing knowledge using rules, procedural Vs declarative knowledge,	
	logic programming, forward Vs backward reasoning, matching control knowledge.	
IV	Knowledge representation using semantic nets, frames, conceptual dependency and scripts, statistical reasoning,:	10
	Probability and Bayes' theorem, certainty factors and rule-based systems.	
	Learning	10
V	General Learning Model, types of learning, rote learning, learning by taking advice, learning by analogy, induction	
	learning, learning by observation and discovery.	
	Introduction to Expert Systems.	
	TOTAL	50

Text Books:

- 1. Artificial Intelligence by E. Rich & K. Knight (Tata McGraw Hill)
- 2. Introduction to Artificial Intelligence & Expert Systems by D.W.Patterson (PHP)
- 3. Principles of Artificial Intelligence by N.J. Nilsson (Narosa)

ELECTIVE-I

COURSE : SEVENTH SEMESTER B.E. (Electrical/E&P/EEE)

SUBJECT: MODELING OF ELECTRICAL SYSTEMS

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03		00	03	03

Evaluation System						
Theory			Practical			
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	10	80	100			

UNIT	CONTENTS	HOURS
	Modeling of synchronous machines I	10
I	Basic models, electrical equations, mechanical equations, per unit system and normalization, parks transformation, flux linkages equations voltage and current equations.	
	Modeling of synchronous machines II	10
П	Formulation of state-space equations, equivalent circuit sub transient and transient inductances and time constants, simplified model of synchronous machines, steady state equations and phasor diagram,	
	determination of machines parameters from manufactures data.	
	Excitation system modeling	10
Ш	Modeling of excitation system components, modeling of complete excitation system.	
	Modeling of induction motors I	10
	Circuit model of a three phase induction motor, linear transformation, phase transformation,	
IV	transformation to a reference frame, and two axis models for induction motor.	
	Modeling of induction motors II	
	Voltage and current Equations in stator reference frame, equation in rotor reference frame, equations in	
	a synchronously rotating frame, torque equation.	

v	Line and load modeling Transformer model, transformer with nominal turns ratio, three winding transformers model, phase shifting transformers, load modeling, constant current model, constant impedance model, constant	10
	power model, composite load, dynamic characteristics, static load modeling for load flow studies, voltage dependence of equivalent loads, derivation for equivalent load powers.	
	TOTAL	50

Text Books -

1) P. S. Bimbhra, "Generalized theory of electrical machines", Khanna Publishers

2) PSR Murty, "Modeling of power system components", BS Publications

Reference Books -

1) P. M. Anderson and A. A. Fouad, "Power System control and stability", Wiley-India Edition

2) Paul C. Krause, Oleg Wasynezuk, Scott D. Sudhoff, "Analysis of Electric Machinery", IEEE Press, 1995

3) Prabha Kundur, Neal J. Balu, Mark G. Lauby, "Power System Stability and Control", Tata McGraw Hill Publishing Co. Ltd.

4) Vedam Subramanyam, "Thyristor control of Electric Drives"

ELECTIVE-I

COURSE : SEVENTH SEMESTER B.E. (Electrical/E&P/EEE)

SUBJECT: PROGRAMMABLE LOGIC AND SEQUENTIAL SYSTEMS

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03		00	03	03

Evaluation System						
Theory Practical						
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	10	80	100			

UNIT	CONTENTS	HOURS
	Programmable logic	
	Read only memories, Programmable logic arrays, programmable array logic, Complex programmable	10
I	logic devices and Field programmable gate arrays.	
	Programmable Controllers	
п	Register transfers, other operations, Register responsive to multiple commands, A simple controller,	10
	Implementation of controller, Shift register controller, conditional response of controller, Sequence for	
	subtraction.	
	Synchronous Sequential logic I	
111	Sequential circuits, storage elements, latches, flip-flops, analysis of clocked sequential circuits, state	10
	reduction and assignment, design procedure, Registers and Counters.	
	Synchronous Sequential Logic II	
IV	Finite State Machines, Davis Davis stars, State diagram State assignment, Chaica of flin flans, Davis	10
IV	Finite State Machines, Basic Design steps, State diagram, State assignment, Choice of flip-flops, Design and Implementation of Moore circuits, Design and implementation of Mealy circuits.	
	and implementation of moore circuits, besign and implementation of meany circuits.	
	Asynchronous sequential Logic	
	Asynchronous behavior, Analysis of Asynchronous circuits, Races, Critical races, State reduction, state	
v	assignment, design procedure, , Flow table, Reduction of state and flow table, Implication table ,race free	10
	assignment, implementation of circuits, types of hazards, Static Hazards, dynamic hazards.	
	TOTAL	50

Text Books -

1) Digital Design	M.Morris Ma	ano	PHI
2) Digital Circuits and Micro	oprocessors	Herbert Taub	TMC

Reference Books -

Fundamentals of digital circuit	s A . Anand Kumar	PHI
Introduction to Digital Design	Swati Saxena Amit Saxena	Dhanpatrai & company