Gondwana University, Gadchiroli

Faculty of Science

Syllabus

B. Sc. II

BIOCHEMISTRY

(SEMESTER III & IV)

(with effect from academic session 2013-14)

Gondwana University, Gadchiroli

Syllabus

Semester Pattern

B.Sc. Part II

(Semester III and IV) BIOCHEMISTRY

(with effect from academic session 2013-14)

- 1) There shall be two semesters in B.Sc. Part II Biochemistry.
- 2) Each semester comprise of two theory papers, internal assessment and practical.
- 3) Each theory paper divided into four units.
- 4) The syllabus is based on six theory periods and six practical periods per batch per week.
- 5) Students are expected to perform all the practicals mentioned in the syllabus. However a minimum of seven experiments in each semester is mandatory.
- 6) Each theory paper examination shall be of three hours duration, comprise 5 questions and carry 50 marks. The practical examination shall be of 6 hours duration and carry 30 marks.
- 7) The B.Sc. students of Biochemistry shall pay at least one visit to any Biochemical/Research Institute as a study tour during three year (six semester) degree course.

Sr	Semest	Paper	Title of Paper	Total	Max.Marks		Total
No	er	No.		periods/	Th	Int.	Marks
				Week			
		I	Macromolecules	03	50	10	60
1	III	II	Biophysical and Biochemical Techniques I	03	50	10	60
			Practical	6	30		30
		Ι	Enzymology	03	50	10	60
2	IV	II	Biophysical and Biochemical Techniques II	03	50	10	60
			Practical	6	30		30

Marks Distribution:

Theory Exam : 50 Marks (for each paper)
 Internal Assessment : 10 Marks (for each paper)

3. Practical : 30 Marks

Distribution of Marks in practical Examination:

Experimental work - 20 marks
 Practical record - 05 marks
 Viva - 05 marks

Study tour:

The B.Sc. students of Biochemistry shall pay at least one visit to any Biochemical/Research Institute as a study tour during three year (six semester) degree course.

B. Sc. Part II Semester III PAPER – I (MACROMOLECULES)

UNIT I:

Proteins: -

- a) Classification based on solubility, shape and functions
- b) Determination of primary structure of proteins
- c) Peptide, peptide mapping, Merrifield-Gutt synthesis.
- d) Secondary structure of proteins: The α helix, β -pleated sheet structures.

UNIT II:

Proteins: -

- a) Tertiary structure of proteins: Forces that stabilize the structure, Concept of domains, Protein denaturation.
- b) Quaternary structure of proteins: Subunit interaction
- c) Structure and biological functions of Collagen

UNIT-III:

Nucleic acids: -

- a) Chemical structure & base composition of nucleic acids, Chargaff's rules.
- b) Double helical structures, Watson Crick Model (B-DNA), Deviations from Watson Crick Model, Other DNA helices (A- & Z-DNA).
- c) Forces stabilizing nucleic acid structures, Base pairing, Base stacking, Hydrophobic and ionic interactions, Denaturation & renaturation

UNIT-IV:

Nucleic acids: -

- a) Tm & buoyant density and their relationship with G-C content in DNA, Satellite DNA.
- b) DNA sequencing: Maxam-Gilbert & Sanger's dideoxynucleotide sequencing.
- c) Structure of m-RNA, r-RNA & t-RNA.

B. Sc. Part II Semester III PAPER – II

(BIOPHYSICAL AND BIOCHEMICAL TECHNIQUES I)

UNIT I:

Buffers and pH:-

- a) Buffer capacity, Mechanism of buffer action, Henderson-Hasselbalch equation, Isoelectric pH.
- b) Biochemically & Physiologically important buffers.
- c) Titration curve of weak acids, Titration curve of amino acids.
- d) Electrometric determination of pH (Hydrogen, Calomel and combined glass electrode).

UNIT II:

Spectrophotometry:-

- a) Concepts of electromagnetic radiation's, Spectrum, Absorption of electromagnetic radiation's.
- b) Orbital theory, Concept of orbitals & their involvement in absorption of electromagnetic radiations.
- c) Concept of chromophores, Beer's law derivation & deviations, Extinction coefficient.
- d) Instrumentation & applications of UV & Visible spectrophotometry.
- e) Spectrofluorometry, Absorption & emission flame photometry.

UNIT III:

Chromatography:-

- a) Partition principle, partition coefficient, Nature of partition forces.
- b) Detailed account of Paper, Thin layer & Column chromatography (Column efficiency and concept of plates).
- c) Gel filtration: Concept of distribution coefficient, Types of gels & glass beads, Applications.

UNIT IV:

Chromatography:-

- a) Ion-Exchange chromatography: Principle, Types of resins, Choice of buffers, Applications.
- b) Affinity chromatography: Principle, Selection of ligand, Ligand attachment, Specific & non-specific elution, Applications.
- c) Elements of High Pressure Liquid Chromatography & Gas Chromatography.

B. Sc. Part II Semester III PRACTICALS

- 1) Quantitative estimation of amino acids using Ninhydrin reaction.
- 2) Estimation of DNA by diphenylamine reaction.
- 3) Estimation of RNA by orcinol reaction.
- 4) Determination of albumin and A / G ratio in serum.
- 5) The validity of Beer's law for colorimetric estimation of creatinine.
- 6) Estimation of blood glucose by Nelson-Somogyi method.
- 7) Estimation of blood sugar by Orthotoluidine method.
- 8) Determination of absorption maxima of hemoglobin.
- 9) Absorption spectrum of NAD and NADH
- 10) Separation of amino acids by two-dimensional TLC.
- 11) Separation of amino acids by descending ascending paper chromatography.
- 12) Estimation of glycine by Sorenson's formol titration.
- 13) Preparation of standard buffers and determination of a pH of a solution.
- 14) Determination of pKa of weak acid by pH meter.
- 15) Determination of isoelectric pH of casein, egg albumin & BSA.
- 16) Titration of mixture of strong acid and weak acid.
- 17) Titration curves of amino acid/weak acids and determination of pK value.
- 18) Colorimetric estimation of calcium in serum.

(Mandatory to perform at least 7 practical)

* * * * * * *

Semester III BOOKS FOR REFERENCE

- 1) Harper's Biochemistry Murray, Granner, Mayes, Rodwell- Prentice Hall International Inc.
- 2) Biochemistry Lehninger CBS publishers.
- 3) Biochemistry Stryer W. H. Freeman & Co. New York.
- 4) Textbook of Biochemistry West, Todd, Bruggen, Mason Amerind publishing Co. Pvt. Ltd.
- 5) Biophysical Chemistry, Principles & Techniques Upadhyay, Upadhyay & Nath Himalaya Publ. House.
- 6) A Biologists Guide to Principle & Techniques of Practical Biochemistry Williams & Wilson Edward Ernold Publ.
- 7) The Tools of Biochemistry T. G. Cooper.
- 8) Principles & Techniques of Practical Biochemistry Wilson, Walker- Cambridge Univ. Press.
- 9) Principles of Biochemistry White, Handler, Smith McGrew Hill Publ.
- 10) Biologist's Physical Chemistry T. G. Morris.
- 11) Chromatography G. Abbott.
- 12) Methods in Experimental Biology R. Ralph.
- 13) Physical biochemistry vanHolde Prentice Hall Inc.
- 14) Physical Biochemistry D. Friefelder W. H. Freeman & Co.
- 15) Chromatography: A Lab Handbook of chromatographic and electrophorectic methods Erich Heftman Van Nostrand Reinhold, NY.
- 16) Immunology Riott, Brastoff, Male Mosby
- 17) Introduction to Immunology Nandini Shetty.
- 18) Immunology Janis Kuby. W. H. Freeman and Co
- 19) Textbook of Biochemistry J. L. Jain