GONDWANA UNIVERSITY
GADCHIROLI

CHOICE BASE CREDIT SYSTEM
(CBCS)
SYLLABUS FOR
M.Sc.
TWO-YEARS DEGREE COURSE
IN

MICROBIOLOGY

From
Academic Year
2016-2017
<table>
<thead>
<tr>
<th>Core Course</th>
<th>Ability Enhancement</th>
<th>Skill Based Course</th>
<th>Discipline Specific Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core 1 Th. Paper 1 (4 Credits) (4 Hours/Week)</td>
<td>Seminar I (1 Credit) (2 Hours/Week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core 2 Th. Paper 2 (4 Credits) (4 Hours/Week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core 3 Th. Paper 3 (4 Credits) (4 Hours/Week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core 4 Th. Paper 4 (4 Credits) (4 Hours/Week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pract. Core Pr. 1 {Based on Core Th. 1&2} (4 Credits) (3-8 Hours/Week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pract. Core Pr. 2 {Based on Core Th. 3&4} (4 Credits) (3-8 Hours/Week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 25 Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Subject</th>
<th>Ability Enhancement</th>
<th>Skill Based Course</th>
<th>Discipline Specific Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core 5 Th. Paper 5 (4 Credits) (4 Hours/Week)</td>
<td>Seminar II (1 Credit) (2 Hours/Week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core 6 Th. Paper 6 (4 Credits) (4 Hours/Week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core 7 Th. Paper 7 (4 Credits)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core 8 Th. Paper 8 (4 Credits) (4 Hours/Week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr. Core Pr. 3 {Based on Core Th. 5&6} (4 Credits) (3-8 Hours/Week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr. Core Pr. 4 {Based on Core Th. 7&8} (4 Credits) (3-8 Hours/Week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 25 Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scheme of teaching and examination under semester pattern Choice Based Credit System (CBCS) for M.Sc. Program.

Semester I

<table>
<thead>
<tr>
<th>Code</th>
<th>Theory / Practical</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hrs/ week</td>
<td>Max.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td>Core 1</td>
<td>Paper 1</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Core 2</td>
<td>Paper 2</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Core 3</td>
<td>Paper 3</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Core 4</td>
<td>Paper 4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Pract. Core 1 & 2</td>
<td>Practical 1</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Pract. Core 3 & 4</td>
<td>Practical 2</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Seminar 1</td>
<td>Seminar 1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>Code</th>
<th>Theory / Practical</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hrs/ week</td>
<td>Max.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td>Core 5</td>
<td>Paper 5</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Core 6</td>
<td>Paper 6</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Core 7</td>
<td>Paper 7</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Core 8</td>
<td>Paper 8</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Pract. Core 5 & 6</td>
<td>Practical 3</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Pract. Core 7 & 8</td>
<td>Practical 4</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Seminar 2</td>
<td>Seminar 2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>

Project Work/Dissertation Scheme / Guidelines for the Students, Supervisors and Examiners

Every student is required to carry out a project work in semester IV. The project can be of following types. A) Experimental Project Work; OR B) Field Based Project Work; OR C) Review writing based Project Work.

Experimental Project Work and Field Based Project Work:

Student can carry out Experimental / Field Based Project Work on a related research topic of the subject /course. It must be an original work and must indicate some degree of experimental work / Field work. On
the basis of this work, student must submit the Project Report (typed and properly bound) in two copies at least one month prior to commencement of the final Practical / lab Examination of Semester IV. The project report shall comprise of Introduction, Material and Methods, Results, Discussion, Summary, Conclusion and, References along with the declaration by the candidate that the work is original and not submitted to any University or Organization for award of the degree and certificate by the supervisor and forwarded through Head / Course-coordinator / Director of the Department / Centre or the Principal of the College.

Review writing based Project Work.

Student can carry out review writing Based Project Work on a related topic of the subject / course. It must be a review of topic based on research publications. Student shall refer peer reviewed original research publications and based on findings, write a summary of the same. The pattern of review writing shall be based on reputed reviews published in a standard, peer reviewed journals. On the basis of this work, student must submit the Project Report (typed and properly bound) in two copies at least one month prior to commencement of the final Practical / lab Examination of Semester IV. The project report shall comprise of Abstract, Introduction, detailed review, Discussion, Summary, Conclusion and, References along with the declaration by the candidate that the work is original and not submitted to any University or Organization for award of the degree and certificate by the supervisor and forwarded through Head / Course-coordinator / Director of the Department / Centre or the Principal of the College.

*The supervisors for the Project Work shall be from the following.

A person shall be an approved faculty member in the relevant subject. OR

Scientists of National Laboratories / Regional Research Laboratories/ Experts from R&D in Industry who are approved by competent authority in such facilities by the Union Government / the State Government / Gondwana University / Other Universities recognized by UGC.

The Project Work will carry total 100 marks and will be evaluated by both external and internal examiner in the respective Department / Center / Affiliated College.

The examiners will evaluate the Project Work/Dissertation taking into account the coverage of subject matter, arrangement and presentation, references, etc.

<table>
<thead>
<tr>
<th>For written Project work</th>
<th>40</th>
<th>Marks – Evaluated jointly by External & Internal examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral Presentation</td>
<td>20</td>
<td>Marks – Evaluated jointly by External & Internal examiner</td>
</tr>
<tr>
<td>For Viva-Voce</td>
<td>20</td>
<td>Marks – Evaluated by External examiner</td>
</tr>
<tr>
<td>Internal Assessment</td>
<td>20</td>
<td>Marks – Evaluated by Internal examiner</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Seminar

Guidelines for Students, Supervisors and Examiners

In each semester, the student will have to deliver a seminar on any topic relevant to the syllabus / subject encompassing the recent trends and development in that field / subject. The topic of the seminar will be decided at the beginning of each semester in consultation with the supervising teachers. The student has to deliver the seminar which will be followed by discussion. The seminar will be open to all the teachers of the department, invitees, and students.

The students should submit the seminar report typed and properly bound in two copies to the head of the department. The said shall be evaluated by the concerned supervisor / head of the department. The marks of the seminar shall be forwarded to the university within due period through head of the Department. The record of the seminar should be preserved till the declaration of the final result.

Internal Assessment:

1. The internal assessment marks shall be awarded by the concerned teacher.
2. The internal assessment marks shall be sent to the University after the Assessment in the prescribed format.
3. For the purpose of internal assessment, the University Department / College shall conduct any three assignments described below. Best two scores of a student in these tests shall be considered to obtain
the internal assessment score of that student.

4. If the student does not appear for the Practical Exam, he shall be declared failed in Practical Examination irrespective of marks obtained in Internal Practical Assessment. However, the Internal Practical Assessment marks will be carried forward for his next supplementary Practical Exam.

5. General guidelines for Internal Assessment are:
 a) The internal assessment marks assigned to each theory paper as mentioned in Appendix 1 shall be awarded on the basis of assignments like class test, attendance, home assignments, study tour, industrial visits, visit to educational institutions and research organizations, field work, group discussions or any other innovative practice/activity.
 b) There shall be three assignments (as described above) per course.
 c) There shall be no separate /extra allotment of work load to the teacher concerned. He/She shall conduct the Internal assessment activity during the regular teaching days/periods as a part of regular teaching activity.
 d) The concerned teacher/department/college shall have to keep the record of all the above activities until six months after the declaration of the results of that semester.
 e) **At the beginning of each semester, every teacher/department/college shall inform his/her students unambiguously the method he/she proposes to adopt and the scheme of marking for internal assessment. (Prescribed in syllabus of respective Subjects).
 f) Teacher shall announce the schedule of activity for internal assessment in advance in consultation with HOD/Principal.

**To be included in syllabus by BOS.

Practical Examination

1. Each practical carries 100 marks. The scheme of marking shall be as per given in the syllabi of respective subjects.
2. Practical performance shall be jointly evaluated by the External and Internal Examiner. In case of discrepancy, the External Examiner's decision shall be final.
3. Duration of practical examination will be as per given in the syllabi of respective subjects.
 The Practical Record of every student shall carry a certificate as shown below, duly signed by the teacher-in-charge and the Head of the Department. If the student fails to submit his/her certified Practical Record duly signed by the Teacher-In-Charge and the Head of the Department, he/she shall not be allowed to appear for the Practical Examination and no Marks shall be allotted to the student.
4. The certificate template shall be as follows:

 CERTIFICATE

 Name of the college/institution ____________________________
 Name of the Department: ____________________________
 This is to certify that this Practical Record contains the bonafide record of the Practical work of Shri/Shrimati/Kumari ____________________________ of M. Sc. __________________
 __________ Semester ___________ during the academic year ___________. The candidate has satisfactorily completed the experiments prescribed by Gondwana University Gadchiroli for the subject ____________________________
 Dated __/__/____

 Signature of the teacher who taught the examinee ____________________________
 Head of the Department ____________________________

 General Rules and Regulations regarding pattern of question paper for the semester end examination:

 A) **Pattern of Question Paper**
 1. There will be four units in each paper.
 2. Maximum marks of each theory paper will be 80.
 3. Question paper will consist of five questions, each of 16 marks.
 4. Four questions will be on four units with internal choice (One question on each unit).
 5. Fifth question will be compulsory with questions from each of the four units having equal weightage and there will be no internal choice.
<table>
<thead>
<tr>
<th>Sem. No.</th>
<th>Paper No.</th>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>Microbial Diversity And Evolution (MDE)</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Microbial Physiology & Metabolism</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Enzymology And Techniques (ET)</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Commercial Microbiology (CE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Based on Paper I & II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Based on Paper III & IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar</td>
</tr>
<tr>
<td>II</td>
<td>I</td>
<td>Advance Techniques in Microbiology (ATM)</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Membrane structure and Signal Transduction (MSST)</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Microbial Methods for Environment Management (MMEM)</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>NANOMICROBIOLOGY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Based on Paper I & II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Based on Paper III & IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar</td>
</tr>
</tbody>
</table>
Semester-I
Paper-I
Microbial Diversity and Evolution (MDE)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PSMBT-101</th>
<th>Topic/Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-I</td>
<td>PSMB101</td>
<td>Microbial Evolution and Systematic Evolution of Earth and early life forms. Primitive life forms: RNA world, molecular coding, energy and carbon metabolism, origin of Eukaryotes, endosymbiosis. Methods for determining evolutionary relationships: Evolutionary chronometers, Ribosomal RNA sequencing, signature sequences, phylogenetic probes, microbial community analysis. Derivation of Microbial Phyllogeny: characteristics of domain of life, classical taxonomy, chemotaxonomy, bacterial speciation.</td>
<td></td>
</tr>
<tr>
<td>Unit-II</td>
<td>PSMB101</td>
<td>Microbial Diversity: Archea General Metabolism and Autotrophy in archea Phylum Euryarchaeota: Halophilic archaea, methanogens, thermoplasm. Phylum Crenarchaeota: Energy metabolism, Thermoproteales, sulfolobales, desulfolobales. Phylum Nanoarchaeota: Nanoarchaeum. Heat stable biomolecules and extremophiles, Evolutionary significance of hyperthermophiles.</td>
<td>04</td>
</tr>
<tr>
<td>Unit-III</td>
<td>PSMB101</td>
<td>Microbial Diversity: Bacteria Phylum Proteobacteria: Free living N2 fixing bacteria, purple phototrophic bacteria nitrifying bacteria, sulphur and iron oxidizing bacteria, sulphate and sulphur reducing bacteria. Phylum prochlorophytes and cyanobacteria, Phylum:Planctomyces, Phylum;Verrucomicrobia.</td>
<td></td>
</tr>
</tbody>
</table>

Reference Books

8. Priest, F.G. and Austin, B. Modern bacterial taxonomy, Chapman and Hall.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>PSMB102</th>
<th>Topic/Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-II</td>
<td>PHOTOSYNTHESIS AND LIPID METABOLISM</td>
<td>Photosynthesis: structure of chloroplast, light reaction and dark reaction; Kelvin cycle, C3 and C4 pathway. Mechanism of energy generation in cyanobacteria, green bacteria and purple sulphur bacteria and chemolithotrops. Lipid metabolism; digestion absorption; oxidation of unsaturated fatty acid and odd chain fatty acid, ketone bodies. Lipid biosynthesis: biosynthesis of fatty acids, triacylglycerol and phospholipids and regulation of fatty acid metabolism.</td>
<td>04</td>
</tr>
<tr>
<td>Unit-III</td>
<td>PROTEIN AND NUCLEIC ACID METABOLISM</td>
<td>Amino acid metabolism: biosynthetic families of amino acids, Breakdown of amino acids into six common intermediates and urea cycle and regulation of amino acid metabolism. Nucleotide metabolism; biosynthesis of purines and pyrimidines nucleotide by de novo and salvage pathways, Degradation of purines and pyrimidines nucleotides.</td>
<td></td>
</tr>
</tbody>
</table>

References
5. Applied Microbial Physiology by Rhodes.
8. Microbial Physiology by Benjam.
11. White, D. The Physiology and Biochemistry of Prokaryotes, Oxford University Press,

Semester-I
Paper-III
Enzymology and Techniques (ET)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PSMB103</th>
<th>Topic/Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSMBT-103</td>
<td>Unit-I</td>
<td>Enzymes kinetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overview of Michaelis-Menten equation and its transformation, Evaluation of kinetic parameters, Kinetics of bisubstrate reaction, multistep reactions, kinetics of enzyme inhibition, Classification of enzymes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit-II</td>
<td>Catalytic mechanisms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concept of active site, determination of active site, acid–base catalysis, covalent catalysis, metal ion cofactors, proximity and orientation effects, preferential binding. Active site determination and mechanism of ribonuclease, lysozyme, Active site determination and mechanism of serine protease.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit-III</td>
<td>Regulation of Enzyme activity</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allosterism, Kinetic analysis of allosteric enzymes Covalent Modification, Feed -back inhibition Membrane bound enzymes, isoenzymes and marker enzymes-LDH, multienzyme complex with mechanism Constitutive and inducible enzymes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit-IV</td>
<td>Techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enzyme isolation and purification- Importance of purification, methods of purification and fractionation, crieteria of purity Protein: ligand binding studies: association and dissociation constants, co-operative ligand binding MWC or concerted model, sequential model. Enzyme biosensors: General concept, Definitions, history and market needs. Glucose biosensor. Industrial applications of enzymes. Immobilized enzymes, Protein engineering.</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES:
6. Enzymology by palmer
11. Topics in enzymes and fermentation biotechnology by L.N.Weiseman, John wiley and Sons.
13. Enzyme structure and mechanism By: Alan Fersht.

Semester-I
Paper-IV
COMMERCIAL MICROBIOLOGY (CE)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PSMB104</th>
<th>Topic/Title</th>
<th>Credit</th>
</tr>
</thead>
</table>
| PSMBT-104 | | **Unit-I** Petroleum Microbiology
Evidence regarding biogenesis of petroleum. Bacterial products as indicators of petroleum biodegradation. Apparatus for the detection of living microbial contaminants in petroleum products.
Exploration: Microbiological Exploration for Petroleum Deposits; Geomicrobiological Methods of Ore and Petroleum Exploration.
Oil recovery: Oil Recovery Process using Aqueous Microbiological Drive Fluids; Bacteriological Method of Oil Recovery.
Microbiological Oil Prospecting, Microbial solubilisation of coal. | |
| | | **Unit-II** Cosmetic Microbiology: Definition; Preparations of Skin whitening compositions from microbes like Ascomycetes, Black yeast, enzymes, and Mineral yeast ferments. Microbial Production of Alpha Arbutin; Hyaluronic acid; Kojic acid and their use in Cosmetics preparations.
Space Microbiology: Monitoring of astronauts microbial flora: Alterations in the load of medically important microorganisms, ESA STONE experiment. Evaluating the Biological Potential in Samples Returned from Planetary Satellites and Small Solar System Bodies. | |
| | | **Unit-III** Textile Microbiology: Definitions: Antimicrobial fabrics; Antimicrobial garments; Antimicrobial carpets and tiles, Antimicrobial colorants. Bacteriostatic Sanitary napkins and towels.
Paper Microbiology: Antibacterial Paper and Antibiotic Paper Production. Antimicrobial papers and Antimicrobial Currency. | |
Unit IV

References:
4. Petroleum Microbiology by Bernard Ollivier, Michel Magot, American Society for Microbiology Press.

Websites:

PRACTICAL PAPER
Based on Theory I & II

PRACTICAL-I
1) Detection of enzyme activity of lipase, Urease, invertase, protease, Tween 80 hydrolysis.
2) Determination of kinetic constant of amylase:- Amylase activity,Vmax,Km.
3) Effect of pH and temperature on amylase activity.
4) Effect of inhibitors on amylase activity.
5) Estimation of protein:
6) Production, isolation and purification of enzyme and determination of fold purification(any one enzyme)
7) Estimation of sucrose in presence of glucose.
8) UV absorption of proteins, DNA and RNA.
9) Estimation of L-leucine by colourimetric method.
10) Determination of pka of an amino acid.
Minimum seven experiments must be performed in the semester.

PRACTICAL PAPER
Based on Theory III & IV

PRACTICAL-II
1) Isolation of microflora from different ecological niches such as freshwater, mangroves, salt pan bed, hot water spring, acid –zone soil, rhizosphere etc. (any two niches)
2) Demonstration microbial Interactions:- competition, syntrophy, antagonism and isolation of nitrogen fixing bacteria.
3) Development of biofilm on metal strips.
4) Isolation and purification of Photosynthetic pigments.
5) Determination of Shannon index as a measure of evenness H/Hmax from garden soil.
6) To study the decolorization of distillery or textile industrial waste.
7) To study the application of lignocellulolytic enzymes in bleaching of paper pulp.
10) Testing for antibacterial activity and efficacy on textile products, Qualitative and quantitative.
13) Antimicrobial assessment of finished textiles.
SEMESTER II
Semester-II
Paper-I
Advance Techniques in Microbiology (ATM)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PSMB105</th>
<th>Topic/Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-I</td>
<td>Biophysical Techniques-I</td>
<td>Determination of size, shape and Molecular weight of Macromolecules:-by Viscosity, CD/ORD, Light scattering, diffusion sedimentation and Centrifugation techniques.</td>
<td></td>
</tr>
<tr>
<td>Unit-II</td>
<td>Biophysical Techniques-II</td>
<td>Electrophoresis: Agarose Gel, SDS-page, two-dimensional gel electrophoresis, capillary electrophoresis, immune-electrophoresis.</td>
<td>04</td>
</tr>
<tr>
<td>Unit-IV</td>
<td>Other advance techniques</td>
<td>Blotting techniques: Western, southern, northern, Radioimmunoassay. NMR and its biological importance. Site-directed mutagenesis, transcriptional start point mapping.</td>
<td></td>
</tr>
</tbody>
</table>

References:
Semester-II
Paper-II
Membrane structure and Signal Transduction (MSST)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PSMB106</th>
<th>Topic/Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSMBT-106</td>
<td></td>
<td>Unit-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structure and organization of membranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mitochondria, endoplasmic reticulum, prokaryotic membrane, membrane junctions (Gap & tight junctions), techniques for membrane study: electron microscopic method, membrane vesicles, differential scanning colorimetry, fluoscorence photobleaching recovery, flow cytometry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit-II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Membrane Transport</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active and Passive transport, uniport, ATP powered pumps, non-gated ion channels, cotransport by symporters and antiporters, transepithelial transport.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit-III</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal Transduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>General concept of cell signaling, G-protein coupled receptors and their effectors. RTK and MAP Kinases. Down regulations of pathways. Cytokine receptors and their mechanism (JAK-STAT pathway).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit-IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bacterial signal transduction</td>
<td></td>
</tr>
</tbody>
</table>

References:
1. The Biochemistry of copper By: Jack Peisach, Phillip Aisen.
2. Biochemistry By: Rex Montgomery.
3. Lehninger Principles of Biochemistry By: David L. Nelson and Cox
8. Cossart et al., Cellular Microbiology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>PSMB107</th>
<th>Topic/Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unit-I Eutrophication, Biodeterioration and Biomagnification</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eutrophication: Microbial changes induced by organic and inorganic pollutants, factors influencing eutrophication process and control of eutrophication.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biodeterioration: Definition and concept of biodeterioration, biodeterioration of woods and pharmaceutical products.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biomagnification: concept and consequences, Biomagnifications of chlorinated hydrocarbons and pesticides.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit-II Biotransformation and Bioleaching, Biodegradation</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biotransformations: metals and metalloids, mercury transformations, biotransformation of pesticides such as hexachlorobenzene.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bioleaching: Bioleaching of ores, leaching techniques and applications.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biodegradation: Biodegradation of plastics.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit-III Pollution Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste water management using activated sludge, aerated lagoons, trickling filter, rotary biological contractors, fluidized bed reactors, stabilization ponds. Concept of phytoremediation and applications.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit-IV Global Environmental Problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ozone depletion, UV-B, green house effect, acid rain, their impact and biotechnological approaches for management. Acid mine drainage and associated problems. Global warming and climate change.</td>
<td></td>
</tr>
</tbody>
</table>

References:
Semester-II
Paper-IV
NANOMICROBIOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PSMB108</th>
<th>Topic/Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-II</td>
<td>Bacterial structure relevant to nanomicrobiology, Cubosomes, Dendrimers, DNA Nanoparticle Conjugates, DNA Octahedron, Fullerenes, Nanoshells, Carbon Nanotubes, Nanopores, Nano structured Silicon. Viruses as nano-particles, nano chemicals and application. DNA based Nanostructures- DNA-protein nanostructures-Methods- Self assembled DNA nanotubes—Nucleic acid Nanoparticles, DNA as a Biomolecular template-DNA branching-Metallization-Properties</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference:
- Nanobiotechnology- concepts, applications and perspectives, Niemeyer, Christof m. Mirkin, Chad A., Wiley publishers.
- Nanobiotechnology of biomimetic membranes, Martin, Donald (edt), Springer Verlag publishers.
- The Handbook of Nanomedicine, Kewal K.Jain
- Bio Nanotechnology, Elisabeth S.Pappazoglou, Aravind Parthasarathy
Biomedical Nanostructures, Kenneth E. Goonsalves, Craig R. Halberstadt, Cate T. Laurecin, Lakshmi S. Nair

Web Sites
1. www.nanotechnologyfordummies.com
2. www.nanobotblogspot.com
3. www_azonano.com
4. www.nano.gov
5. www.forbesnanotech.com
6. www.foresight.org
7. www.nanotech-now.com

PRACTICAL PAPER
Based on Theory I & II
PRACTICAL-I
1) Separation of DNA by agarose gel electrophoresis and estimation of DNA by Diphenylamine method.
2) Estimation of RNA by Orcinol method.
3) Separation of amino acids by paper chromatography.
4) Separation of serum proteins by paper electrophoresis.
5) Thin layer chromatography of mycotoxins
6) SDS-Page of proteins.
7) Performance of affinity chromatography.
8) Performance of Gel filtration chromatography.
9) Demonstration of blotting technique.[any one].
10) Ion exchange chromatography

PRACTICAL PAPER
Based on Theory III & IV
PRACTICAL-II
1) Isolation of Yeast.
2) Isolation of Actinomycetes.
3) Membrane disruption and separation subcellular organelles.
4) Production of microbial pigments using any pigment producing organism.
5) Biotransformation of toxic chromium (+6) into nontoxic (+3) by Pseudomonas species.
6) Microbial dye decolourization.
7) Isolation of Mercury resistant bacteria.
8) Immobilization of dyes.
9) Determination of Laboratory bioleaching process.