# BACHELOR OF ENGINEERING (FOUR YEARS DEGREE COURSE)
## FACULTY OF SCIENCE & TECHNOLOGY
### TEACHING AND EXAMINATION SCHEME WITH CHOICE BASED CREDIT SYSTEM

**Course and Examination Scheme of Bachelor of Engineering (Mechanical Engineering) V Semester B.E. (Mechanical Engineering)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hours per week</td>
<td>No. of Credits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME501</td>
<td>Design of Machine Elements</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ME502</td>
<td>Metrology &amp; Quality Control</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ME503</td>
<td>Mechanical Measurement</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ME504</td>
<td>Heat Transfer</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ME505</td>
<td>Program Elective-I</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ME506</td>
<td>Heat Transfer</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>ME507</td>
<td>Mechanical Measurement &amp; Metrology</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>ME508</td>
<td>Computer Application – I</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ME509</td>
<td>Mini Project</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

**Note:** Students shall opt one Core Program Elective-I from Table-1

**Table-I**

1) ME5051: Industrial economics and Entrepreneurship Development
2) ME5052: Product design and Development
3) ME5053: Industrial Robotics

Total: 750
### Course and Examination Scheme of Bachelor of Engineering (Mechanical Engineering) VI Semester B.E. (Mechanical Engineering)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>ME601</td>
<td>Control System Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ME602</td>
<td>Program Elective-II</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ME603</td>
<td>Thermal Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ME604</td>
<td>Theory of Machines II</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ME605</td>
<td>Industrial Electronics</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ME606</td>
<td>Theory of Machines II</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>ME607</td>
<td>Computer Applications – II</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ME608</td>
<td>Industrial Electronics lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>ME609</td>
<td>Industrial Training or Case Study</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

|             |                                     |     |   |   |     | 15  | 6   | 8   | 24  | -     |            |            | 29   | 24  | 400 | 50 | 50 | 500 | - | 125 | 75 | 200 | 100 |

**Note:** Student shall opt one Professional Elective II. Refer Table-II

**Table II**

1) ME 6021 - Operations Research Techniques
2) ME 6022 - Hydraulics and Pneumatics
3) ME 6023 - Material Handling systems
UNIT – I  
[ 12 Hrs. ]

Definition of design, types of design, design process, (i.e, various phases in design) feasibility, preliminary design alternatives, General consideration in Machine Design. Manufacturing considerations in design. 

Mechanical properties, Applications and designations as per ISI and their equivalence with other standards of engineering materials, selection of material. 


Design of Cotter Joint & Knuckle Joint.

UNIT – II  
[ 12 Hrs. ]

Design of Riveted joint for Boiler shell, Design of Lozenge joint (Uniform Straight joint), eccentrically loaded riveted joint. 

Welded Joint: Design of single transverse, double transverse, parallel fillet, combination fillet, butt joint, eccentrically loaded welded joints. 

Bolted joint: Design of bolted fasteners, bolts of uniform strength, bolted joints under eccentric loading.

UNIT – III  
[ 12 Hrs. ]

Design of power screw: Derivation of Expression for deflection and shear stress in helical spring, design of helical spring, design of leaf spring. 

Design of lever: Hand lever, Foot lever, and Bell crank lever.
UNIT – IV

Classification of thin & thick cylindrical pressure vessels, Stresses in thin & thick cylindrical pressure vessels when it is subjected to internal pressure, expression for circumferential & longitudinal stresses, design of pressure vessel, heads & cover plate.
Design of transmission shafts on the basis of strength, rigidity & critical speed.
ASME code for shaft design. Design of Stepped shaft, Axle, Splined shaft, Keys.
Design of Shrink & Press Fit Joints

BOOKS RECOMMENDED:

5. Design Data for Machine Elements – B. D. Shiwalkar
ME502: METROLOGY & QUALITY CONTROL (Theory)

CREDITS: 03

Teaching Scheme
Lectures: 3 Hours/Week
Tutorial: 1 Hour/Week

Examination Scheme
Duration of Paper: 03 Hours
University Assessment: 80 Marks
College Assessment: 20 Marks

UNIT – I [ 9 Hrs. ]

Classification of operations – Basic qualifying process, critical product, critical secondary, auxiliary, supporting operations.

Tolerance analysis of limit & fits. Types of fits, shaft basis system, hole basis system, Selective assembly, allowances, IS specifications. Design of Limit gauges.

UNIT – II [ 9 Hrs. ]


UNIT – III [ 9 Hrs. ]

Quality Control :- Definition, function, objectives, characteristics. Quality, Quality of design, quality of conformance, process control charts and process capability. Statistical quality control.

UNIT – IV [ 9 Hrs. ]

Acceptance sampling techniques, O. C. Curves, sampling plans, Inspection :- Types and objectives.(No analytical treatment)

Introduction to ISO 9000, BIS 14000 series, TQM concepts, Quality assurance, Quality audit, Quality circles.

UNIT – V [ 9 Hrs. ]

Jigs and Fixtures : Introduction, Difference between jigs and fixtures, uses, principles of jigs and fixtures design. Materials, principles of location, methods of location. Clamping requirements, types of clamps, jig bushes, drilling jigs, milling fixtures, classification of fixtures.
**BOOKS RECOMMENDED:**

4. Statistical Quality Control – Grant.
5. Total Quality Management – Zaire
7. Statistical Quality Control – Mahajan.
ME503: MECHANICAL MEASUREMENT (Theory)

CREDITS: 03

Teaching Scheme
Lectures: 3 Hours/Week
Tutorial: 1 Hour/Week

Examination Scheme
Duration of Paper: 03 Hours
University Assessment: 80 Marks
College Assessment: 20 Marks

UNIT – I [ 9 Hrs. ]
Purpose, structure and elements of measuring system. Static characteristics of measurement system elements including systematic, statistical characteristic, generalized model of system element and calibration. Measurement error, error probability density function, error reduction.

UNIT – II [ 9 Hrs. ]

UNIT – III [ 9 Hrs. ]

UNIT – IV [ 9 Hrs. ]

UNIT – V [ 9 Hrs. ]

BOOKS RECOMMENDED:

2. Principles of Measurement Systems - Nakra Chaudhary
3. Principles of Measurement Systems - Beckwith Buck
5. Mechanical Measurement and Industrial Instrumentation - D. S. Kumar
6. Mechanical Measurement and Industrial Instrumentation - R. K. Rajput
UNIT – I  

UNIT – II  

UNIT – III  
Forced convection, Physical significance of non-dimensional parameters. Concept of velocity & thermal boundary layer thickness, Local and average heat transfer coefficients. Empirical co-relations for external, internal flow, laminar & turbulent flow through conduits.


UNIT – IV  
UNIT – V


BOOKS RECOMMENDED:

1. Introduction to heat Transfer – Incropera & Dewitt J. Wiley

2. Elements of Heat Transfer – M. N. Ozisik

3. Heat Transfer – S. P. Sukhatme


5. Heat Transfer – Dr. D.S. Kumar
ME 505: PROGRAM ELECTIVE -1  
ME 5051:- INDUSTRIAL ECONOMICS & ENTREPRENEURSHIP DEVELOPMENT (Theory)

CREDITS: 03

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hours/Week</td>
<td>Duration of Paper: 03 Hours</td>
</tr>
<tr>
<td>Tutorial: 1 Hour/Week</td>
<td>University Assessment: 80 Marks</td>
</tr>
<tr>
<td></td>
<td>College Assessment: 20 Marks</td>
</tr>
</tbody>
</table>

UNIT – I [ 9 Hrs. ]

Industrial Economics: Basic concepts, demand analysis, types of demand, determinants of demand, methods of demand forecasting, supply, law of diminishing marginal utility, elasticity of demand.

UNIT – II [ 9 Hrs. ]

Factors of production, production function, firm and industry, laws of return, cost concepts, fix variable, average, marginal and total cost, break even analysis, depreciation cost, taxation system, types of taxes.

UNIT – III [ 9 Hrs. ]

Optimum size of unit, optimum firm, industrial combinations, causes for the growth of combinations, forms of combinations in India, Various competitive situations, perfect, monopoly, monopolistic, oligopoly. Price determination under these situations, Impact of globalization on Indian economy.

UNIT – IV [ 9 Hrs. ]

Concept of entrepreneurship, definition, competencies of entrepreneurs, entrepreneurial functions, achievement, motivation, types of enterprises. Procedure to set up small scale industrial unit, advantages and limitation of SSI. Market survey and factors governing product selection. Project report preparation, technical, financial & marketing analysis of project.

UNIT – V [ 9 Hrs. ]

Factors governing the selection of site, plant and machinery. Role of consultancy organizations, role of District Industries Center, State Industrial Development Corporations, Banks and Financial Institutions, latest SSI intensive schemes (To be confirmed from DIC time to time). Determination of working capital requirement.
**BOOKS RECOMMENDED:**

5. Dynamics of Entrepreneurial Development – Vasant Desai
ME 505: PROGRAM ELECTIVE – I

ME 5052: PRODUCT DESIGN AND DEVELOPMENT (Theory)

CREDITS: 03

Teaching Scheme
Lectures: 3 Hours/Week
College Tutorial: 1 Hour/Week

Examination Scheme
Duration of Paper: 03 Hours
University Assessment: 80 Marks
College Assessment: 20 Marks

UNIT – I  [9 Hrs.]

Introduction Product Design. Trigger for Product/Process/System, Problem solving approach for Product Design, Disassembling existing product(s) and understanding relationship of components with each other, Sketching of components, identifying materials and their processing for final product, fitting of components, understanding manufacturing as scale of the components, Reverse engineering concept, case studies of products in markets, (or in each discipline), underlying principles, Case studies of product failures, Revival of failed products, Public/Society’s perception of products, and its input into product design.

UNIT – II  [9 Hrs.]

Ideation, Generation of ideas, Funneling of ideas, Short-listing of ideas for product(s) as an individual or group of individuals, Sketching of products, Market research for need, competitions, Scale and cost, Initial specifications of products


UNIT – III  [9 Hrs.]

Conceptualisation.
Designing of components, Drawing of parts and synthesis of a product from its component parts, Rendering the designs for 3-D visualization, Parametric modelling of product, 3-D visualization of mechanical Products, Detail engineering drawings of components.

Industrial design: process, need. Robust Design: Taguchi Designs & DOE. Design Optimization

UNIT – IV  [9 Hrs.]

Design for Manufacturing & Assembly: Methods of designing for Manufacturing & Assembly.

UNIT – V  [9 Hrs.]

Reference Books:

1. Model Curriculum for “Product Design Engineer – Mechanical”, NASSCOM (Ref. ID: SSC/Q4201, Version 1.0, NSQF Level: 7)
ME 505: PROGRAM ELECTIVE – I
ME 5053: INDUSTRIAL ROBOTICS (Theory)

CREDITS: 03

Teaching Scheme
Lectures: 3 Hours/Week
College Tutorial: 1 Hour/Week

Examination Scheme
Duration of Paper: 03 Hours
University Assessment: 80 Marks
College Assessment: 20 Marks

UNIT – I [9 Hrs.]
Automation and Robotics, Robot anatomy, configuration of robots, joint notation schemes, work volume, introduction to manipulator kinematics, position representation, forward and reverse transformations of a 2- DOF arm, a 3- DOF arm in two dimension, a 4 – DOF arm in three dimension, homogeneous transformations in robot kinematics, D-H notations, solving kinematics equations, introduction to robot arm dynamics.

UNIT – II [9 Hrs.]
Basic control system models, slew motion, joint –interpolated motion and straight line motion, controllers like on/off, proportional, integral, proportional plus integral, proportional plus derivative, proportional plus integral plus derivative.

UNIT – III [9 Hrs.]
Robot actuation and feedback components position and velocity sensors, actuators and power transmission devices, mechanical grippers, vacuum cups, magnetic grippers, pneumatic, electric, hydraulic and mechanical methods of power and control signals to end effectors.

UNIT – IV [9 Hrs.]
General considerations in robot material handling, material transfer applications, pick and place operations, palletizing and related operations, machine loading and unloading, die casting, plastic molding, forging, machining operations, stamping press operations using robots. Application of robot in spot welding continuous are welding, spray coatings, Robots in Assembly Operations.

UNIT – V [9 Hrs.]
Robot cell layouts, multiple robots and machine interface, other considerations in work cell design, work cell control, interlocks, error detection and recovery, work cell controller, robot cycle time analysis.

TEXT BOOK:


REFERENCE S BOOKS:


ME506: HEAT TRANSFER (Laboratory)

CREDITS: 02

Teaching Scheme
Practical: 3 Hours/Week

Examination Scheme
University Assessment: 25 Marks
LIST OF PRACTICALS

Minimum Eight experiments out of following should be performed

1. Study of different methods of temperature measurements with special emphasis on thermocouples.
2. Study of different thermal properties of matter with special Emphasis on thermal conductivity of various materials.
3. Determination of thermal conductivity of metal bar
4. Determination of thermal conductivity of insulating material in the powder form.
5. Determination of thermal conductivity of liquids.
6. Determination of thermal conductivity by guarded plate heater method.
7. Determination of temperature distribution and heat transfer plate from a fin under
   (A) Free convection & (B) Forced convection condition.
8. Determination of forced convection heat transfer coefficient for fluid flow through a closed conduit.
9. Determination of forced convection heat transfer coefficient for air fluid flow over a
   vertical surface.
12. Study of various types of heat exchangers.
13. Determination of emissivity of non black surfaces.
15. Study of heat pipes.

A Journal/Report on practicals conducted shall be submitted by each student. University Practical examination shall be on viva-voce of 10 marks and practical performance or objective test of 15 marks.
LIST OF PRACTICALS:

Minimum Eight experiments out of following should be performed.

1. Study of first order and second order instruments.
2. Study of displacement measurement using LVDT.
3. Study of Load measurement using load Cell.
4. Study of torque measurement using torque Cell.
5. Study of Strain measurement using strain gauges and digital strain indicator.
6. Study of speed measurement using
   a) Photo electric pick up b) Magnetic pick up c) Stroboscope.
7. Calibration of pressure gauge by
   a) Dead weight pressure tester b) Pressure cell.
8. Study temperature measurement using thermocouple, thermisters and RTD.
9. Study of comparators (mechanical type, electric type, electronic type).
10. Study of surface roughness indicators.
11. Study of straightness and flatness by Autocollimeter, Profile projector and monochromatic light interference method.
12. Study linear measuring instruments (precision and non precision types).

A Journal/Report on practicals conducted shall be submitted by each student. University Practical examination shall be on viva-voce of 10 marks and practical performance or objective test of 15 marks.
Course Objectives and Outcomes:

Use of Computers for solving complex numerical problems requires the knowledge of programming learnt in the previous course. Engineering problems are quite complex and it may not be possible to find their analytical solutions. Hence it is required to resort to computer oriented numerical methods for solving them. The objective is to use programming knowledge for development of application programs for solution of various numerical methods & also in area of Mechanical engineering. This course is expected to provide some practical hands-on experience of programming for numerical methods, problems in Mechanical engineering & also exposure to Mathematical Software/s.


Exposure to software’s like MATLAB / MATHCAD / SCI LAB / MATHEMATICA or any other relevant commercial softwares/ freewares

LIST OF PRACTICAL

Minimum Eight to Ten practical from the following groups A, B & C covering each group.

A) Development of Programmes in C / C++ for following.

1. Factorial of a number using functions
2. Sorting of Vectors
3. Addition of Matrices
4. Transpose of Matrix
5. Multiplication of Matrices
6. Gauss Elimination method
7. Iterative Methods -Gauss Jacobi Iterative Method
8. The Gauss-Seidel Iteration Method
9. Euler Method
10. Predictor Corrector Method
11. Runge Kutta Method
12. Taylor’s Series
13. Regula Falsi Method
14. Newton Raphson’s Method
15. Least Square Fit Method

B) Development of programmes in C / C++ to solve the problems in Mechanics, Fluid Mechanics, Kinematics of Machines, Engineering Thermodynamics, Hydraulic Machines, Mechanics of Materials, Design of Machine Elements, Heat Transfer or in other areas of Mechanical Engineering.

C) Application of Mathematical Software/s for solution of problems for the above mentioned groups.

A Journal/Report on practicals conducted shall be submitted by each student. University Practical examination shall be on viva-voce of 20 marks and practical performance of 30 marks.

BOOKS RECOMMENDED:

1. E. Balaguruswami - Programming in ANSI - Tata Mcgraw Hill Publishing Co. Ltd
3. Y.P. Kanetkar - Let Us C - Jones & Bartlett Learning;
A group of students (not more than 10 students in a group) should fabricate a working model of any mechanical or electro-mechanical system. Computer / mathematical model or simulation is not acceptable. A brief report and a photograph of the model shall be submitted by the students.
Gondwana University, Gadchiroli
Faculty of Engineering and Technology

B.E. (MECHANICAL ENGINEERING): SIXTH SEMESTER

ME601: CONTROL SYSTEM ENGINEERING (Theory)

CREDITS: 04

Teaching Scheme
Lectures: 3 Hours/Week
Tutorial: 1 Hour/Week

Examination Scheme
Duration of Paper: 03 Hours
University Assessment: 80 Marks
College Assessment: 20 Marks

UNIT – I

[ 9 Hrs. ]

Mathematical modeling of Physical Systems and Concept of Transfer Function.. (Mechanical, Mechanical System (Linear displacement with Two masses, Electrical and Operational amplifiers only). System representation through Block Diagram and Signal Flow Graph. Transfer function through Block Diagram Simplification and Masons Gain Formula.

UNIT – II

[ 9 Hrs. ]

Time Domain Response Analysis under transient inputs, Steady state error analysis and error constants. PID controller and its application, Routh-Herwitz criterion of absolute stability and Range stability.

UNIT – III

[ 9 Hrs. ]

Frequency Domain Analysis, Polar Plot, Bode plot, gain Margin and phase margin, Transportation lag, System Identification from Bode plot.

UNIT – IV

[ 9 Hrs. ]

Nyquist Stability criterion, Nyquist plot for Type zero and Type – L system, Root – Locus, it’s significance, construction techniques and plotting of Root Locus.

UNIT – V

[ 9 Hrs. ]

Introduction to control system design, lag lead compensation, Feed Back compensation and Pole – Zero placement.
State variable approach and state equations, Transfer function from state models, state transition matrix and solution of state equations, controllability and observability test through test model.
BOOKS RECOMMENDED:

1. Modern Control Engineering by Ogata [PHI]
2. Control system Engineering by Nise [Willey]
3. Control Systems by Nagrath & Gopal [TMH]
4. Modern Control Systems by Dorf [Addision Wesley]
5. Digital Control and State Variable Methods by Gopal [TMH]
6. Control System Engineering - Raven
ME602: INDUSTRIAL ELECTRONICS (Theory)

CREDITS: 03

Teaching Scheme
Lectures: 3 Hours/Week
Tutorial: 1 Hour/Week

Examination Scheme
Duration of Paper: 03 Hours
University Assessment: 80 Marks
College Assessment: 20 Marks

Objectives:

1. To learn industrial electronics in applied manner with perspective of mechanical Engineering.
2. To introduce the design philosophy for mechanical processes control based on digital electronics, microcontroller and PLC.

Outcomes: Learner should be able to ….
1. Demonstrate the knowledge of basic functioning of digital circuits and microcontroller.
2. Understand input/output system and communication interfaces required for modern mechanical process.
3. Know the PLC. Programming with PLC and its application for the industrial automation.

UNIT – I: Digital Circuit [ 11 Hrs. ]

Number system, Complements of binary number system, De-Morgan’s theorem, Types of logic equations: SOP & POS, Karnaugh’s map(upto 4 variables), Binary codes, Combinational logic: Code convertors, Introduction to multiplexer/demultiplexer, Introduction to decoder/encoder, Arithmetic circuits: Adder/Subtractor, Flip-flops

UNIT – II: Microcontroller 8051 [ 10 Hrs. ]

Overview of Generic microprocessor and microcontroller, Architecture and functional block diagram of microcontroller 8051, Special function registers, Addressing modes, Types of instructions, Simple assembly language programs

UNIT – III: I/O Ports, Timers, Interrupts and Serial Communication [ 10 Hrs. ]

I/O ports of 8051, Basics of serial communication, 8051 connection to RS232, Timers of 8051, Different modes of timers, Interrupts of 8051, Interfacing of 8051 with 8255 PPI, Interfacing of 8051 with external RAM and ROM

UNIT – IV: Industrial Automation [ 8 Hrs. ]

Introduction to programmable logic controller, Block schematic, I/O processing, Programming with PLC, Ladder diagram representation, Watchdog timers, Selection of PLC, Applications
UNIT – V: Mechatronics [ 9 Hrs. ]

Introduction to mechatronics, Systems, Measurement systems, Control systems, Microprocessor based controllers, Response of systems, Design processes in mechatronic systems, Case studies of mechatronic systems

BOOKS RECOMMENDED:

ME 603: THERMAL ENGINEERING (Theory)

CREDITS: 04

Teaching Scheme
Lectures: 3 Hours/Week
Tutorial: 1 Hour/Week

Examination Scheme
Duration of Paper: 03 Hours
University Assessment: 80 Marks
College Assessment: 20 Marks

UNIT – I
[ 9 Hrs. ]
Principles of steam generation, classification of steam generators, fire tube and water tube steam generators, high pressure steam generators, advantages, Boiler mountings and accessories.
Fluidized Bed Boilers: bubbling fluidized bed boilers, Circulating fluidized bed boilers (elementary treatment expected).
Draught and its classification, Chimney height, diameter, efficiency, condition for maximum discharge.
Performance of steam generators, evaporation capacity, equivalent evaporation, boiler efficiency.

UNIT – II
[ 9 Hrs. ]
Steam Nozzles: Flow of steam through nozzle, Adiabatic expansion in nozzles, maximum discharge, critical pressure ratio and effects of friction, calculation of throat and exist area, supersaturated flow, Wilson line.
Introduction to steam engines, Steam turbines: Principles of working of steam turbines, classification of steam turbines, Impulse and reaction turbine and its comparison, compounding of steam turbines.

UNIT – III
[ 9 hrs. ]
Flow of steam through turbine blades, Ideal and actual reheat factors, velocity diagrams, graphical and analytical methods, work done, thrust and power, dimensions and proportioning of blades, steam turbine efficiencies, condition for maximum efficiencies, reheat and regenerative cycles, governing of steam turbines, energy losses in steam turbine.

UNIT – IV
[ 9 hrs. ]
Steam condensers: Types of condensers, classification of condensers, quantity of cooling water required, design calculations for surface condensers, Dalton’s law of pressures, sources of air leakages and air removal, air ejectors.
Cooling towers: Wet cooling towers, Dry cooling towers, cooling ponds.
UNIT- V

Positive Displacement Compressors: Reciprocating compressors – parts and operations, work done during isothermal, polytropic & adiabatic compression process. P-V diagram, isothermal efficiency, effect of clearance, volumetric efficiency mechanical efficiency, multistage compressor, condition for minimum work input, capacity control.

BOOKS RECOMMENDED:

3. Thermal Engineering – Mathur & Mehta
4. Thermal Engineering – Vasandani & Kumar
ME604: THEORY OF MACHINES – II (Theory)

CREDITS: 03

Teaching Scheme
Lectures: 3 Hours/Week
Tutorial: 1 Hour/Week

Examination Scheme
Duration of Paper: 03 Hours
University Assessment: 80 Marks
College Assessment: 20 Marks

UNIT - I [ 9 Hrs. ]

UNIT - II [ 9 Hrs. ]
Static force analysis: - Free body diagram, condition of equilibrium. Analysis of all links of given linkages, cam, gear mechanism and their combinations without friction. Dynamic force analysis of planar linkages such as four bar chain & reciprocating mechanism by graphical method, Cam dynamics and jump-off phenomenon. Problems on Cam Dynamics with flat face follower.

UNIT - III [ 9 Hrs. ]

UNIT - IV [ 9 Hrs. ]
Turning moment vs. crank angle diagram for single - cylinder & multiple cylinder engines, punching machines etc. Flywheel selection. Speed governors, centrifugal & inertia type, Watt, Portal, Proell, Hartnell governors, Operating characteristics of governors.

UNIT - V [ 9 Hrs. ]
TEXT BOOKS:

1. Theory of machines & Mechanisms - Shigley
2. Theory of Machines & Mechanisms - Ghosh & Mallik
3. Theory of Mechanisms - S. S. Rattan
5. Theory of Vibrations - W. T. Thomson

REFERENCE BOOKS:

1. Theory of Machine - Thomas Bevan
2. Theory of Machines - Sandor & Erdman
3. Mechanical Vibrations - Grover
ME605: Program Elective – I

ME6051: OPERATIONS RESEARCH (Theory)

CREDITS: 04

Teaching Scheme
Lectures: 3 Hours/Week
Tutorial: 1 Hour/Week

Examination Scheme
Duration of Paper: 03 Hours
University Assessment: 80 Marks
College Assessment: 20 Marks

UNIT – I

[ 9 Hrs.]

UNIT – II

[ 9 Hrs.]

UNIT – III

[ 9 Hrs.]
Network Models: Introduction to PERT/CPM and its importance in project management. Concept and construction of network diagrams. Probability of completion of project, Cost analysis of project.

UNIT – IV

[ 9 Hrs.]
Replacement Models: Introduction, Concept of equivalence, Replacement of items that Deteriorate, Replacement of items that fail suddenly.
Inventory Control Models: Introduction, Meaning of Inventory control, Advantages of Inventory control.
Deterministic Inventory control Models, economic lot size with instantaneous replenishment with and without storage costs, economic lot size with finite replenishment with and without shortage. Selective Inventory Management Technique.

UNIT – V

[ 9 Hrs.]
Queuing Model: Introduction, (M/M/1): (FCFS/∞/∞), Single channel Poison arrivals with exponential service times, infinite population. (No Derivation Expected)

BOOKS RECOMMENDED:
1) Operations Research - P.K. Gupta and D.S. Hira
2) Operations Research - J. K. Sharma
3) Operations Research - Dave and Patel
4) Quantitative Techniques - N.D. Vora
ME605 : Program Elective – II

ME6052 : HYDRAULICS AND PNEUMATICS (Theory)

CREDITS: 03

Teaching Scheme
Lectures: 3 Hours/Week
Tutorial: 1 Hour/Week

Examination Scheme
Duration of Paper: 03 Hours
University Assessment: 80 Marks
College Assessment: 20 Marks

UNIT - I

FLUID POWER SYSTEMS AND FUNDAMENTALS:
Introduction to fluid power, Advantages of fluid power, Application of fluid power system. Types of fluid power systems, Properties of hydraulic fluids - General types of fluids - Fluid power symbols. Basics of Hydraulics - Applications of Pascal’s Law - Laminar and Turbulent flow - Reynold’s number - Darcy’s equation - Losses in pipe, valves and fittings.

UNIT II

HYDRAULIC SYSTEM & COMPONENTS:

UNIT III

DESIGN OF HYDRAULIC CIRCUITS:

UNIT IV

PNEUMATIC SYSTEMS AND COMPONENTS:

UNIT V

DESIGN OF PNEUMATIC CIRCUITS:
Servo systems - Hydro Mechanical servo systems, Electro hydraulic servo systems and proportional valves. Fluidics - Introduction to fluidic devices, simple circuits, Introduction to Electro Hydraulic
Pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits; failure and troubleshooting.

TEXT BOOKS:

1. Hydrantion and Pnumation by Dr. H.D.Ranchandra, Sudha Publication, Bangalore
4. Hydraulics & Pneumatics by Andrew Parr, Jaico Publishing House
5. Pneumatic Systems by S.R. Mujumdar, TMH

REFERENCE BOOKS:


ME605 : Program Elective – II

**ME6053 :- MATERIAL HANDLING SYSTEM (Theory)**
UNIT – I

Types of interplant transporting facility, principal groups of material handling equipments, choice of material handling equipment, hoisting equipment, screw type, hydraulic and pneumatic conveyors, general characteristics of hoisting machines, surface and overhead equipments, general characteristics of surface and overhead equipments and their applications. Introduction to control of hoisting equipments. Flexible hoisting appliances like ropes and chains, welded load chains, roller chains, selection of chains, hemp rope and steel wire rope, selection of ropes, fastening of chains and ropes, different types of load suspension appliances, fixed and movable pulleys, different types of pulley systems, multiple pulley systems. Chain and rope sheaves and sprockets.

UNIT – II

Load handling attachments, standard forged hook, hook weights, hook bearings, cross piece and casing of hook, crane grab for unit and piece loads, carrier beams and clamps, load platforms and side dump buckets, electric lifting magnets, grabbing attachments for loose materials, crane attachments for handling liquid materials.

UNIT – III

Arresting gear, ratchet type arresting gear, roller ratchet, shoe brakes and its different types like electromagnetic, double shoe type, thruster operated, controller brakes, shoe brakes, thermal calculations of shoe brakes and life of linings, safety handles, load operated constant force and variable force brakes general theory of band brakes, its types and construction.

UNIT – IV

Different drives of hosting gears like individual and common motor drive for several mechanisms, traveling gear, traveling mechanisms for moving trolleys and cranes on runway rails, mechanisms for trackless, rubber-tyred and crawler cranes motor propelled trolley hoists and trolleys, rails and traveling wheels, slewing, jib and luffing gears. Operation of hoisting gear during transient motion, selecting the motor rating and determining braking torque for hoisting mechanisms, drive efficiency calculations, selecting the motor rating and determining braking torque for traveling mechanisms, slewing mechanisms, jib and luffing mechanisms. (Elementary treatment is expected).

UNIT – V

Cranes with rotary pillar, cranes with a fixed post, jib cranes with trolley, cranes with luffing boom cantilever cranes, cage elevators safety devices of elevators belt and chain conveyors and their power calculations, vibrating and oscillating conveyors pneumatic and hydraulic conveyors, screw
conveyors hoppers, gates and feeders. Introduction to AGVs as new material handling device, use of robot form material handling.

BOOKS RECOMMENDED:

3. Introduction to Material Handling – Siddharth Ray, New Age International

ME606: THEORY OF MACHINE - II (Laboratory)
CREDITS: 02

Teaching Scheme Examination Scheme
LIST OF PRACTICALS:

Minimum Eight out of following shall be performed.

1. Performance characteristics of Gyroscope.
2. Performance characteristics of Governor
3. Determination of critical speed of shaft
4. Determination of natural frequency of single rotor system
5. Determination of natural frequency of double rotor system.
6. Determination of natural frequency of un-damped system
7. Determination of natural frequency of damped system
8. Determination of Jump-off speed of cam follower system
9. Dynamic balancing of rotor
10. Balancing of Reciprocating mechanism
11. Natural frequency determination of cantilever beam

A Journal/Report on practicals conducted shall be submitted by each student. University Practical examination shall be on viva-voce of 10 marks and practical performance or objective test of 15 marks.
ME607: GEOMETRIC MODELLING (Laboratory)

CREDITS: 03

Teaching Scheme
Practical: 2 Hours/Week
Tutorial: 1 Hour/Week

Examination Scheme
University Assessment: 50 Marks
College Assessment: 50 Marks

Course Objectives and Outcomes: Computer Aided Drawing and modeling has become indispensable in the current engineering designs. All undergraduate Mechanical Engineering Students are expected to be well versed with these modern drawing techniques. Further the practice of this knowledge shall enhance the special intelligence and imaginations of the student. The Institute/colleges are expected to perform the practicals using any of the standard geometric modeling software based on the following syllabi. The students are expected to get introduced to the use & application of Geometric modeling software.

1) Introduction
Strengths and weaknesses of conventional 2D drawing. Types of geometric modeling, wire frame modeling, surface modeling, solid modeling (CSG & B-rep) advantages, disadvantages and application. File Formats and Data exchange.

2) Sketching
Sketching, line, circle, arc, spline. Filleting, trimming. Dimensioning linear, angular, diameter, radius, modifying dimension. Constraints parallel, perpendicular, co-incident, vertical, horizontal, tangent, symmetric.

3) Solid Modeling Sketch based features extrude, revolve, sweep, variable section sweep, loft. Add, subtract, intersection, Modifying commands fillet, chamfer, array, copy, mirror etc. Design tables.

4) Surface modeling techniques
Tabulated surface, revolved surface, swept surface, lofted surface, edge defined surface. Multi section sweep & Variable section sweep

5) Assembly
Assembly: Top down and bottom up approach, constraints, mate, align, Joints

6) Drafting & Detailing of 3-D Models
Detailing generating views, sectional views, Orthographic views, isometric Dimensioning views, adding dimensional and geometric tolerances, surface finish. Creating BOM.
LIST OF PRACTICALS:

At least six to eight practicals based on above syllabus, demonstrating application on sketching, surface modeling, part modeling, Assembly and detailing of assembly shall be performed using commercial software/s (like CATIA, PRO-E, SOLIDWORKS, etc.) or relevant freewares.

University practical examination shall be based on viva voce of 20 marks and practical performance of 30 marks.

BOOKS RECOMMENDED:

1. CAD / CAM, Theory & Practice - Ibrahim Zeid
2. User / Command / Tutorial manuals of relevant software/s
ME608: INDUSTRIAL ELECTRONICS LAB (Laboratory)

CREDITS: 02

Teaching Scheme
Practical: 2 Hours/Week

Examination Scheme
University Assessment: 25 Marks
College Assessment: 25 Marks

LIST OF PRACTICALS:

Minimum Eight out of following shall be performed.

1. To study basic logic gates.
2. To study adders and subtractors.
3. To study and verify Demorgan’s theorem and Laws of Boolean algebra.
4. To study the operation multiplexer and demultiplexer.
5. To study the operation of a) decoder b) seven segment decoder.
6. Write an ALP to add two a) 8-bit nos. b) 16-bit nos.
7. Write an ALP to subtract two a) 8-bit nos. b) 16-bit nos.
8. Write an ALP to find largest no. in given array.
9. Write an ALP to separate even and odd nos. from given array.

A Journal/Report on practicals conducted shall be submitted by each student. University Practical examination shall be on viva-voce of 10 marks and practical performance or objective test of 15 marks.
ME609: INDUSTRIAL TRAINING OR CASE STUDY

CREDITS: 01

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical: 2 Hours/Week</td>
<td>College Assessment: 50 Marks</td>
</tr>
</tbody>
</table>

Students are expected to fulfill any one of the following (A or B).

(A) Students are expected to undergo the training during the vacations before commencement of fifth/sixth semester in Industry or organization of minimum two weeks duration in total. Student should submit training report with certificate from concerned industry/organization. Student is expected to give presentation based on the training report.

(B) Students not undergoing industrial training will have the option of Case Study in lieu of Industrial Training and shall be completed during Sixth semester only. Case study should be based on the study of some specific case/issue/problem related to any industrial/business establishment. The case study can be also based on the study of report prepared by any industry/organization related to issues/problems. Group of students (Max 09) can be considered for this study. A report should be submitted. The report should include problem/issue identified, methodology of data collection, data collected, method of analysis, results and conclusion. Student is expected to give presentation based on this report.

Evaluation Guidelines for A and B are as follows:

<table>
<thead>
<tr>
<th>Industrial Training or Case Study Report</th>
<th>25 Marks (Maximum).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation</td>
<td>15 Marks (Maximum).</td>
</tr>
<tr>
<td>Viva – Voce</td>
<td>10 Marks (Maximum).</td>
</tr>
</tbody>
</table>