Gondwana University,

Gadchiroli

Instrumentation Engineering

Model Curriculum

III/IV Semesters (AY:2020-21)

Syllabus

Board of Studies in Instrumentation Engineering

AUDIT HEADS:

The students shall be required to qualify in minimum 10(TEN) Audit Heads from the available list. The Students shall be at the liberty to acquire assigned FIVE(05) non-academic Credits by the time he/she appears for the first ESE of VI semester of the Program. The Colleges shall send list of Ten Audit Heads qualified(Q) by the student and their single composite Grade Point(G) by that time. The Audit Heads shall be considered only if undertaken during the tenure of this program, during its first three years. For qualifying, the student has to secure minimum grade point of "5" in TEN different Audit Heads. The Audit Course Credits shall not be counted for calculation of GPA.

The Audit Heads Grade Point shall be shown in the Grade Sheet of VI semester B.E. in all the programs. If the composite Grade Points (G) is not sent from the college side till the above prescribed time, then such student shall be shown "F" (Fail) in the Grade Sheet of VI semester. The College shall send consolidated list of all the students in the Program and their "Composite Grade Point" in respect of Audit Heads qualified by them in the prescribed format "Form-AHCI".

A	National Social Service(NSS)	Н	National Cadet Corps (NCC)	0	Blood Donation
В	Paper Presentation	Ι	Quiz Competition	Р	Debate Competition
С	Computer/Software/ Campus Recruitment courses (3-5 days)	J	Office Bearer in Departmental or higher Students Body/Professional Society (College level)	Q	Soft skills Development Course (3-5 days)
D	Hardware/Software Competition participation	K	Volunteer in minimum inter collegiate activities	R	Sports Team Participation
E	YOGA/Meditation Training Certificate (Minimum Three Days)	L	Cultural Activity Competition, National , State, District level Essay Competition.	S	Certificate of Noteworthy participation in National event like SWACHCHHA BHARAT ABHIYAAN, TREE PLANTATION
F	Certificate of service to the Home for the Aged/Orphans/Differently enabled (1-3 days)	М	Membership of any registered Non- Government Organization(NGO)	Т	Plant/Industrial Visit
G	Certificate of Appreciation by local Civic/District /State/ National level Government	N	Certificate of Noteworthy participation in Environment Day/AKSHAY URJA Day or such other programs of national importance/Environmental day,	U	Participation in 3 to 5 days youth Seminars on Social, Environmental, Wellbeing,

The following Audit Heads shall be available to the students:

Authority/Organizations	Science day, Engineers Day, Teachers	Consciousness Programs.
	day etc.	

The Audit Heads may be appended/revised/changed from time to time and shall be notified by the University.

Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Model AICTE Curriculum First Semester Common to GROUP-A branches of Engineering & Technology

				Г	eacl	hing S	Scheme	Examination Scheme									
	G		Subject	He	ours Wee	Per k	Numbe			THEO	RY				PRAC	CTICAL	
Category	Code	BoS		L	Т	Р	r of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Max Mar Sessio MSE	x. ks onal IE	Total	Min. Passin g Marks	Max. Marks TW	Max. Mark s POE	Tota 1	Min. Passing Marks
BSC	FE101	S&H	Physics	3	1	0	4	3	80	10	10	100	40				
BSC	FE102	S&H	Mathematics –I	3	1	0	4	3	80	10	10	100	40				
ESC	FE103	Electrical	Basic Electrical Engineering	3	0	0	3	3	80	10	10	100	40				
ESC	FE104	Mechanical	Engineering Graphics & Design	2	0	0	2	4	80	10	10	100	40				
HSMC	FE105	S&H	Soft Skill	2	0	0	2	-	-	40	10	50	20				
		Laborator	·y														
BSC	FE106	S&H	Physics Lab	0	0	3	1	-	I	-	-	Ι	-	25	25	50	25
ESC	FE107	Electrical	Basic Electrical Engineering Lab	0	0	2	1	-	-	-	-	-	-	25	25	50	25
ESC	FE108	Mechanical	Engineering Graphics & Design Lab	0	0	4	2	-	-	-	-	-	-	25	25	50	25
			Total			9						450				150	
		Semester Total			24 19				9 600								

Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Model AICTE Curriculum Second Semester Common to GROUP-A branches of Engineering & Technology

				, r	Геас	hing	Scheme	Examination Scheme											
C	C			He	ours Wee	Per k	Ntarahari			THEOR	RY				PRACTICAL				
Category	Code	BoS	Subject	L	Т	Р	of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Max Marl Sessio MSE	k. ks onal IE	Total	Min. Passin g Marks	Max. Marks TW	Max. Mark s POE	Tota 1	Min. Passing Marks		
BSC	FE201	S&H	Chemistry-I	3	1	0	4	3	80	10	10	100	40						
BSC	FE202	S&H	Mathematics –II	3	1	0	4	3	80	10	10	100	40						
ESC	FE203	Computer	Programming for Problem Solving	3	0	0	3	3	80	10	10	100	40						
HSMC	FE204	S&H	English	2	0	0	2	-	-	40	10	50	20						
		Laborator	·y																
BSC	FE205	S&H	Chemistry-I Lab	0	0	3	1	-	-	-	-	-		25	25	50	25		
ESC	FE206	Computer	Programming for Problem Solving Lab	0	0	2	1	-	-	-	-	-		25	25	50	25		
ESC	FE207	Mechanical	Workshop/ Manufacturing Practices	1	0	4	3	-	-	-	-	-		50	50	100	50		
HSMC	FE208	S&H	English	0	0	2	1							50	-	50	25		
		Total			2	11						350				250			
		Semester Total			25		19						600						

Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Model AICTE Curriculum Third Semester Instrumentation Engineering

						hing	Scheme					Examina	tion Schei	me			
Course	Course			Ho	Hours Pe Week		Number			THEOR	RY				PRAC	CTICAL	,
Category	Code	BoS	Subject	L	Т	Р	of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Max Marl Sessic MSE	k. ks onal IE	Total	Min. Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min. Passing Marks
BSC/ ESC/ HSMC	IN301	S&H	Mathematics-III (Probability and Statistics)	3	1	0	4	3	80	10	10	100	40				
PCC	IN302	Instru. Engg.	Sensors & Transducers	4	0	0	4	3	80	10	10	100	40				
PCC	IN303	Instru. Engg.	Electronics Devices & Circuits	3	0	0	3	3	80	10	10	100	40				
PCC	IN304	Instru. Engg.	Electronic Measurement	3	0	0	3	3	80	10	10	100	40				
PCC	IN305	Instru. Engg.	Network Theory	3	0	0	3	3	80	10	10	100	40				
		Laborator	y														
PCC	IN306	Instru. Engg.	Sensors & Transducers	0	0	2	1	-	-	-	-	-	-	25	25	50	25
PCC	IN307	Instru. Engg.	Electronics Devices & Circuits	0	0	2	1	-	-	-	-	-	-	25	25	50	25
PCC	IN308	Instru. Engg.	Electronic Measurement	0	0	2	1	-	-	-	-	-	-	25	25	50	25
MC	IN309	Instru. Engg.	Mandatory Course Environmental Sciences	0	0	2	0										
			Total	16	1	8						500				150	
		Semester Total			25 2		20	650									

Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Model AICTE Curriculum Fourth Semester Instrumentation Engineering

				Teaching Scheme				neme Examination Scheme									
Course	Course			Ho	ours Wee	Per k	Numbe			THEOF	RY				PRAC	CTICAL	
Category	Code	BoS	Subject	L	Т	Р	r of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Max Mark Sessio MSE	x. cs mal IE	Total	Min. Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min. Passing Marks
BSC/ ESC/ HSMC	IN401	Instru. Engg.	Fundamentals of Communication	3	0	0	3	3	80	10	10	100	40				
BSC/ ESC/ HSMC	IN402	Instru. Engg.	Digital Circuits and Fundamentals of Microprocessors	3	1	0	4	3	80	10	10	100	40				
PCC	IN403	Instru. Engg.	Automatic Control System	3	0	0	3	3	80	10	10	100	40				
PCC	IN404	Instru. Engg.	Industrial Instrumentation	4	0	0	4	3	80	10	10	100	40				
PCC	IN405	Instru. Engg.	Linear Integrated Circuits	3	0	0	3	3	80	10	10	100	40				
		Laborator	у														
PCC	IN406	Instru. Engg.	Automatic Control System	0	0	2	1	-	-	-	-	Ι		25	25	50	25
PCC		Instru. Engg.	Industrial Instrumentation	0	0	2	1	-	-	-	-	-		25	25	50	25
PCC	IN407	Instru. Engg.	Linear Integrated Circuits	0	0	2	1	-	-	-	-	-		25	20	100	50
			Total	16 1 6								500				250	
		Semester Total					20	600									

Model Curriculum

AY: 2020-21

Semester: III

Instrumentation Engineering

Course Code

: IN301

Title of the Course : Mathematics-III

		Course Sch	eme	Evaluation Scheme (Theory)							
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total		
3	1	0	4	4	3	10	10	80	100		

Units	Contents	Hours
1	Module 1: Laplace Transform	09
	Definition& conditions for existence ; Transforms of elementary	
	functions; Properties of Laplace transforms : Linearity property, first	
	shifting property, second shifting property, multiplication by t ,division	
	by t , change of scale property, transforms of derivatives, transforms of	
	integrals of functions; Evaluation of definite integrals by using Laplace	
	transform, Transforms of some special functions- periodic function	
	Heaviside unit, step function.	
2	Module 2: Inverse Laplace Transform	09
	Introductory remarks ; Inverse transforms of some elementary functions ;	
	General methods of finding inverse transforms ; Partial fraction method	
	and Convolution Theorem for finding inverse Laplace transforms ;	
	Applications to find the solutions of linear differential equations and	
	simultaneous linear differential equations with constant coefficients.	
3	Module 3: Fourier Integral & Transform	09
	Fourier integral theorem (without proof); Fourier sine and cosine	
	integrals; Complex form of Fourier integrals; Fourier sine and cosine	
	transforms; Properties of Fourier transforms; Parseval's identity for	
	Fourier Transforms .	
4	Module 4: Partial Differential Equations	09
	Formation of Partial differential equations by eliminating arbitrary	
	constants and functions; Equations solvable by direct integration; Linear	
	equations of first order (Lagrange's linear equations); Method of	
	separation of variables	
5	Module 5: Matrices	09
	Inverse of matrix by partitioning method, Rank of a matrix and	
	consistency of system of linear simultaneous equations. , Eigen values	
	and Eigen vectors, Reduction to diagonal form Cayley-Hamilton	
	Theorem, Sylvester's Theorem (statements only) Solution of second	
	order linear differential equation by matrix method.	4.5
		45

Text/ Reference Book:

- 1. Text book of Applied Mathematics Volume I and II by J. N. Wartikar and P. N. Wartikar.
- 2. Higher Engineering Mathematics by B. S. Grewal Khanna Publishers
- 3. Advanced Engineering Mathematics by H. K. Dass
- 4. Advanced Engineering Mathematics by Erwins Kreyszig

Course Code : IN302

Title of the Course : Sensors & Transducers

		Course Sch	eme	Evaluation Scheme (Theory)							
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total		
4	0	0	4	4	3	10	10	80	100		

- **1.** *Define* units, standards, characteristics and various errors in the measurement of physical parameters.
- **2.** *Classify* sensors/transducers according to physical parameters for strain, force, torque, displacement and speed.
- 3. *Illustrate* construction and working principle of various sensors/transducers.
- 4. *Evaluate* various parameters of different sensors/transducers.
- 5. *Select* the appropriate sensor for measurement of physical parameters.

Units	Contents	Hours
1	Module 1: Introduction	09
	Measurement system, transducer, sensor, calibration and standards, range	
	and span. Characteristics of system. Transducer classification, selection	
	criteria.	
2	Module 2:	09
	Force and weight: Basic methods of force measurement, elastic force	
	traducers, strain gauge, load cells, shear web, piezoelectric force	
	transducers, vibrating wire force transducers	
	Torque measurement: strain gauges, Inductive torque meter, Magneto-	
	strictive transducers, , torsion bar dynamometer, etc.	
	shaft power: dynamometer (servo control and absorption) instantaneous	
	power measurement and alternator power measurement, tachometers	0.0
3	Module 3:	09
	Displacement measurement: potentiometers, strain gauges, LVDT and	
	eddy current type transducers, magnetic pickups, capacitive pickups,	
	differential capacitive cells, piezoelectric, ultrasonic transducers and hall	
	effect transducers, optical transducers.	
	I nickness measurement: magnetic, dielectric, capacitive, ultrasonic and	
4	Module 4:	09
-	Velocity and speed measurement. Moving magnet and moving coil	07
	Electromagnetic tachometer Photoelectric tachometer Toothed rotor	
	variable reluctance tachometer. Magnetic pickups, Encoders,	
	Photoelectric pickups, stroboscopes.	
	Vibration and acceleration measurement: Eddy current type.	
	piezoelectric type, Seismic Transducer, Piezo-electric type, jerk meter	
5	Module 5: Allied Sensors	09
	Leak detector, flame detector, smoke detector, density, viscosity sensors.	
	Sound sensors and Proximity sensors.	
		45

- 1. Sawhney A.K., "Electrical & Electronic Measurements and Instrumentation", Dhanpat Rai Publications, 2001
- **2.** D.V.S. Murthi, "Instrumentation and Measurement Principles", PHI, New Delhi, Second ed. 2003.
- **3.** B. C. Nakra and K. K. Choudhari, "Instrumentation Measurements and Analysis" by, Tata McGraw Hill Education, Second ed., 2004.
- 4. D. Patranabis, 'Sensors and Transducers', Prentice Hall of India, 1999.

- 1. B.G. Liptak, "Process Measurement & Analysis", Chilton Book Company, Fourth ed., 2003.
- 2. E.O. Doebelin, "Measurement Systems", McGraw Hill, Fifth ed., 2003.
- 3. Sabrie Soloman, "Sensors Handbook", McGraw Hill Publication, First ed., 1998.

Course Code : IN303

Title of the Course : Electronic Devices & Circuits

		Course Sch	eme	Evaluation Scheme (Theory)							
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total		
3	0	0	3	3	3	10	10	80	100		

- **1.** *Select* the different types of transistor and diode based on their operating characteristics
- **2.** *Illustrate* BJT and FET as an amplifier.
- **3.** *Utilize* diode with passive components to convert sinusoidal AC into DC.
- 4. *Compare* the different method of feedback amplifier
- 5. *Design* the various types of oscillator for different frequencies

Units	Contents	Hours
1	Module 1: SEMICONDUCTOR DIODES AND POWER SUPPLIES	10
	PN junction diode, Zener diodes, varactor diodes, Tunnel diodes, LED,	
	LCD -V-I characteristics, Clipper & Clamper Circuits using Diode,	
	Power supplies-1 Φ & 3 Φ - Half wave & full wave Rectifiers, ripple	
	factors & regulation, Filters (L, C, LC & Π)	
2	Module 2: JUNCTION TRANSISTORS	09
	Theory of operation, characteristics (CE, CB, and CC), break down	
	voltage, current, voltage power limitations of BJT, Different biasing	
	arrangement. Stability factor. Thermal runway, Power Transistors. DC	
	load line, AC load line.	
3	Module 3: FET ANALYSIS	08
	Introduction to FET characteristics and configurations, DC Analysis of	
	FET, Power considerations, FET as Amplifier, Amplifier step response	
	and frequency response, MOSFET – construction, characteristics, biasing	
	and Load line.	
4	Module 4: POWER AMPLIFIERS	08
	Classification of A, B, C, AB Amplifier, Other Common amplifier	
	classes, push pull configuration (A, B, AB) Complimentary symmetry,	
	Amplifier Distortions.	10
5	Module 5: FEEDBACK AMPLIFIER	10
	Classification, Feedback concept, Transfer gain with feedback, General	
	Characteristics of negative feedback amplifier, Method of analysis of	
	reedback amplifier, Voltage-series, Current-series, Voltage-shunt,	
	Current-snunt feedback. Positive Feedback in amplifiers,	
	Barknausen's criterion and stability of oscillators, sinusoidal oscillators –	
	KC, LC and crystal oscillator	15
		45

- 1. Principal of Electronics, R.S. Sedha, S. Chand Publication
- 2. Electronics Device & Circuits, Schaum's Outline Series TMH, JIMMIE J. CATHEY

Reference Books:

1. Integrated Electronics, McGraw Hill: - Millman & Halkias

2. Electronics Device & Circuits McGraw Hill: - Millman & Halkias

Course Code : IN304

Title of the Course : Electronic Measurement

		Course Sch	eme		Evaluation	n Schem	e (Th	eory)	
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	0	0	3	3	3	10	10	80	100

- 1. *Determine* the errors in measurement/instruments.
- 2. *Carry out* the measurement of phase, frequency using oscilloscope.
- **3.** *Illustrate* the working of different DC and AC bridges and derive the expression for balance condition.
- 4. *Discriminate* the DC and AC measurement technique.
- 5. *Design* the voltmeter and ammeter of different ranges.

Units	Contents	Hours
1	Module 1: Measurement and Error	08
	Definitions, Static and dynamic performance characteristics, Significant	
	figures, Types of error, Statistical analysis, Probability analysis of Errors,	
	Limiting Errors,	
	Performance analysis of meters: Suspension Galvanometer, Torque and	
	deflection of the galvanometer, Permanent-Magnet Moving-coil	
	mechanism	
2	Module 2:Electromechanical Indicating instruments	08
	DC Ammeters, DC Voltmeters, Voltmeter sensitivity, series-Type	
	ohmmeter, Shunt-Type ohmmeter, Multimeter or volt-ohm-milliammeter,	
	Multi-range meters, Calibration of DC Instruments, Introduction to	
	Electrodynamometer, Classification of resistances, Ammeter Voltmeter	
	methods and Substitution method for measurement of resistance, Megger.	
3	Module 3: DC Bridges & AC Bridges	11
	DC Bridges: Configurations of DC Bridges, Sensitivity, precision and	
	limitations of Wheatstone bridge, Kelvin Bridge and Kelvin's Double	
	Bridge.	
	AC Bridges: Configurations of AC Bridges and its components, General aquation for bridge balance. Constal form of an A.C. Bridges and phaser	
	diagram	
	Maggurement of self inductance: Maywell's inductance bridge	
	Maxwell's inductance-capacitance bridge Hay's bridge	
	Measurement of canacitance: De Sauty's Bridge Schering Bridge High	
	voltage Schering Bridge Measurement of relative Permittivity with	
	Schering Bridge	
	Measurement of Frequency: Wien Bridge.	
4	Module 4: Electronic Instruments for measuring basic parameters	09
	Amplified DC Meter, AC voltmeter using rectifiers. True RMS-	
	Responding Voltmeter, Electronic multimeter, Digital Voltmeters,	
	Component Measuring Instruments, LCR-Q meter	

5	Module 5:.Oscilloscope	09
	Oscilloscope block diagram, Cathode ray tube (CRT), Electrostatic	
	deflection, Vertical Deflection system, Delay sweep, Horizontal	
	deflection system, Oscilloscope techniques, Introduction to Digital	
	storage oscilloscope.	
		45

- 1. Albert D. Helfrick and William D. Cooper, *Modern Electronic Instrumentation and Measurement Techniques*, PHI Learning ISBN-978-81-203-0752-0
- 2. A. K. Sawhney and Puneet Sawhney, *A course in Electrical and Electronic Measurements and Instrumentation*, Dhanpat Rai and Co. ISBN-81-7700-016-0

- **1.** Terman and Petil, *Electronic instrumentation*.
- 2. Kalsi, *Electronic Instrumentation*, (TMH publication)
- 3. Oliver, *Electronic Measurement and Instrumentation*, (TMH publication)
- 4. Barnest Frank, Measurement analysis.
- 5. Drydat and Jolley, *Electric Measurement and Measuring Instrument*.

Course Code : IN305

Title of the Course : Network Theory

	Course Scheme			Evaluation Scheme (Theory)					
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs MSE IE ESE Tota				Total
3	0	0	3	3	3	10	10	80	100

- **1.** Use Kirchhoff's voltage and current laws for the analysis of electric circuits consisting of energy sources and passive components.
- 2. Verify the various network theorems for AC and DC circuits.
- 3. Estimate power and power factor of the circuits.
- **4.** Solve the governing differential equations for a time-domain first and second-order circuit.
- **5.** Analyze the response of circuit in frequency domain.

Units	Contents	Hours
1	Module 1: Methods of analyzing circuits	08
	Voltage and current sources: independent, dependent, ideal and practical;	
	V-I relationships of resistor, inductor, and capacitor, Energy sources,	
	Kirchhoff's voltage and current law, Voltage and current division, Power	
	in a series and parallel circuits, Mesh analysis, Super mesh analysis,	
	Nodal analysis, Super node analysis, Source transformation techniques.	
2	Module 2: Useful theorems in circuit analysis	07
	Star-Delta transformation, Superposition theorem, Thevenin's theorem,	
	Norton's theorem, Reciprocity theorem, Compensation theorem,	
	Maximum power Transfer Theorem, Tellegen's theorem, Millman	
	theorem, Duals and duality.	
3	Module 3:	13
	Alternating currents and voltages: Phase relations in a pure resistor,	
	inductor, and capacitor.	
	Complex impedance: Series circuits, parallel circuits, compound	
	circuits.	
	Power and power factor: Average power, Apparent power and power	
	factor, Reactive power, Power triangle.	
	Steady state AC analysis: Mesh analysis, Nodal Analysis, Superposition	
	theorem, Thevenin's theorem, Norton's theorem, Reciprocity theorem,	
	Compensation theorem, Maximum power Transfer Theorem.	
4	Module 4:	07
	Transients : Steady state and transient response, DC response of a R-L,	
	R-C, R-L-C circuit, sinusoidal response of a R-L, R-C, R-L-C circuit,	
	Analysis of transient and steady state responses using Classical technique.	
5	Module 5:	10
	Two-port Networks: Two-port networks, driving point impedance and	
	admittance, Z, Y, ABCD, h parameters, Inter relationships of different	
	parameters, Interconnection of two-port networks.	
	Application of frequency domain methods in circuit analysis:	

Applications of Laplace transform, Fourier series and Fourier transform in circuit analysis.	
	45

- 1. D. Roy Choudhury, Networks and Systems, New Age International Publishers, 1988.
- **2.** SmarajitGhosh, *Network Theory analysis and Synthesis*, Prentice Hall of India Pvt. Ltd., New Delhi, 2005.
- **3.** A.Sudhakar, ShyammohanS. Palli, *Circuits and Network Circuits Analysis and Synthesis*, McGraw-Hill Education, 2015.
- 4. A. Chakrabarthy, *Circuit Theory*, DhanpatRai, 2005.

- 1. G. K. Mittal, Network analysis, 14th Edition , Khanna Publications, New Delhi, 2007.
- 2. Van Valkenburg, Network Analysis, Prentice Hall of India Pvt. Ltd., 3rd Edition, 2014.
- 3. Franklin F Kuo, *Network Analysis & Synthesis*, Wiley India PVT. Ltd., 2nd Edition, 2006.
- 4. K.C. A. Smith & R. E. Alley, *Electrical Circuits*, Cambridge University Press, 1992.
- 5. K. Rajeswaran, *Electric Circuit theory*, Pearson Education, 2004.
- 6. Bruce Carlson, *Circuits*, Thomson Publishers, 1999.

Course Code : IN306

Title of the Course : Sensors & Transducers Laboratory

	Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Tutorial	Practical	Credits	TW	POE	Total		
0	0	2	1	25	25	50		

Course Outcomes: After completion of the course, the student will be able to:

- 1. *Measure* the physical parameters using various sensors/transducers.
- 2. *Demonstrate* the performance characteristics of various transducers.
- 3. *Analyze* the performance characteristics of various transducers.
- 4. *Interpret* the working of allied sensors.
- 5. *Select* the appropriate sensors/transducers for given application.

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least eight experiments based on contents of syllabi in the form of a journal and necessary documentation.

Suggested list of experiments: Students are expected to perform minimum 08 experiments.

- 1. Measure various parameters using digital calibrator and study its functions.
- 2. Characterization of force measurement system
- 3. Characterization of Displacement measurement system using LVDT.
- 4. Demonstrate the Speed measurement system using Photo pickup.
- 5. Demonstrate the Speed measurement system using Magnetic Pickup.
- 6. Demonstrate the measurement of pressure using piezoelectric transducer.
- 7. Characterization of pressure measurement system using strain gauge.
- **8.** Interpret the working of allied sensors.
- 9. Select appropriate proximity sensors.
- **10.** Analysis of Hall effect and calculate the Hall coefficient.

Text Book:

- 1. Sawhney A.K., "Electrical & Electronic Measurements and Instrumentation", Dhanpat Rai Publications, 2001
- 2. D.V.S. Murthi, "Instrumentation and Measurement Principles", PHI, New Delhi, Seconded. 2003.
- **3.** B. C. Nakra and K. K. Choudhari, "Instrumentation Measurements and Analysis" by, Tata McGraw Hill Education, Second ed., 2004.
- 4. D. Patranabis, 'Sensors and Transducers', Prentice Hall of India, 1999.

- 1. B.G. Liptak, "Process Measurement & Analysis", Chilton Book Company, Fourth ed., 2003.
- 2. E.O. Doebelin, "Measurement Systems", McGraw Hill, Fifth ed., 2003.
- 3. Sabrie Soloman, "Sensors Handbook", McGraw Hill Publication, First ed., 1998.

Course Code : IN307

Title of the Course : Electronic Devices & Circuits Laboratory

Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Tutorial	Practical	TW	POE	Total		
0	0	2	1	25	25	50	

Course Outcomes: After completion of the course, the student will be able to:

- 1. Record the characteristics of various diodes and transistors.
- 2. Find the performance parameters of the JFET and MOSFET.
- **3.** Analyze the frequency response of various configurations of single stage amplifier.
- 4. Verify the output frequency of oscillator.
- 5. Design the half and full wave rectifier for its efficiency.

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least eight experiments based on contents of syllabi in the form of a journal and necessary documentation.

Suggested list of experiments: Students are expected to perform minimum 08 experiments.

- 1. To record the forward and reverse characteristics of PN junction diode.
- 2. To find the ripple factor and efficiency of half and full wave rectifier with and without filter.
- 3. To plot the forward and reverse characteristics of zener diode.
- 4. To calculate the voltage regulation of zener diode.
- **5.** To verify the characteristics of transistor in CE,CB AND CC configuration and find input and output resistance.
- 6. To analyze the frequency response of single stage CE amplifier.
- 7. To plot the transfer and drain characteristics of JFET and MOSFET.
- 8. To study the class B push pull amplifier
- 9. To design RC phase shift oscillator circuits.
- **10.** To design LC and crystal oscillator circuits.

Text Book:

- 1. Sawhney A.K., "Electrical & Electronic Measurements and Instrumentation", Dhanpat Rai Publications, 2001
- 2. D.V.S. Murthi, "Instrumentation and Measurement Principles", PHI, New Delhi, Seconded. 2003.
- **3.** B. C. Nakra and K. K. Choudhari, "Instrumentation Measurements and Analysis" by, Tata McGraw Hill Education, Second ed., 2004.
- 4. D. Patranabis, 'Sensors and Transducers', Prentice Hall of India, 1999.

- 1. B.G. Liptak, "Process Measurement & Analysis", Chilton Book Company, Fourth ed., 2003.
- 2. E.O. Doebelin, "Measurement Systems", McGraw Hill, Fifth ed., 2003.
- 3. Sabrie Soloman, "Sensors Handbook", McGraw Hill Publication, First ed., 1998.

Course Code : IN308

Title of the Course : Electronic Measurement Laboratory

	Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Tutorial	Practical	Credits	TW	POE	Total		
0	0	2	1	25	25	50		

Course Outcomes: After completion of the course, the student will be able to:

- 1. *Choose* suitable bridge for measurement of R, L, C and frequency.
- 2. *Examine* various components of PMMC instrument and grasp its working concept.
- **3.** *Design* multi-range Ammeter and Voltmeter.
- 4. *Verify* the unknown value of passive components using AC/DC bridges.
- **5.** *Analyze* the AC/DC voltage using the oscilloscope and its typical use for measurement of phase and frequency.

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least eight experiments based on

contents of syllabi in the form of a journal and necessary documentation.

Suggested list of experiments: Students are expected to perform minimum 08 experiments.

- 1. To understand the construction and working of PMMC instruments.
- 2. To design the multi-range instruments for measurements of V & I.
- **3.** To analyze the error and sensitivity of resistance measurement using Wheatstone bridge configuration.
- 4. To verify the unknown value of inductance using Maxwell bridge.
- 5. To verify unknown values of capacitance using AC bridges.
- 6. To recognize the functions of dual beam oscilloscope.
- 7. To measure the AC/DC voltage using the oscilloscope
- 8. To analyze Lissajous Pattern for measurement of phase and frequency using CRO.
- 9. To chose the suitable bridge for measurement of passive components.
- **10.** To study the working of LCR-Q meter.

Text Book:

- 1. Albert D. Helfrick and William D. Cooper, *Modern Electronic Instrumentation and Measurement Techniques*, PHI Learning ISBN-978-81-203-0752-0
- 2. A. K. Sawhney and Puneet Sawhney, *A course in Electrical and Electronic Measurements and Instrumentation*, Dhanpat Rai and Co. ISBN-81-7700-016-0

- 1. Terman and Petil, *Electronic instrumentation*.
- 2. Kalsi, *Electronic Instrumentation*, (TMH publication)
- 3. Oliver, *Electronic Measurement and Instrumentation*, (TMH publication)
- 4. Barnest Frank, Measurement analysis.
- 5. Drydat and Jolley, *Electric Measurement and Measuring Instrument*.

Course Code : IN309

			Course Sch	eme		Evaluation	n Schem	e (Th	eory)	
]	Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
	0	0	2	2	0	0	0	0	0	0

Title of the Course : Environmental Sciences

Course Outcomes: At the end of the course, students will demonstrate the ability to:

1. Understand basics of environmental ecosystem.

2. Analyse threats to Bio-diversity and Conservation of Bio-diversity.

3. Apply impacts on environment and human communities.

4. Appreciate the environmental movements, ethics

Approach of Experimental Studies -

Innovative Case studies based on following five units. Every student had to submit five innovative case studies based on above Syllabus but can go beyond syllabus on the similar approach.

Units	Contents	Hours
1	Module 1: Scope and nature of Environmental science, Man and	09
	Environment, Structure and function of ecosystem; energy flow in the	
	aquatic ecosystem	
2	Module 2: Environmental pollution: types, causes, effects and controls of	09
	air and water pollution, climate change, global warming, green house	
	effect, ozone layer depletion	
3	Module 3: Land resources and land use changes, land degradation, soil	09
	erosion and desertification, Alternate energy resources, Deforestation.	
	Water: Use and over exploitation of surface and ground water, floods,	
	droughts, conflicts over water (national and inter-state)	
4	Module 4: Levels of biological diversity: genetic, species, and ecosystem	09
	diversity, Conservation of biodiversity, Biogeographic zones of India.	
	Threat to biodiversity: Habitat loss, poaching of wild life, man-wild life	
	conflicts, Endangered and endemic species of India.	
5	Module 5:Human population growth: Impacts on environment, human	09
	health and welfare. Disaster management: floods, earthquakes, cyclones	
	and landslides. Environmental ethics, Environmental education,	
	awareness and audits. Environmental movements: Chipko, Silent valley,	
	Bishnois of Rajasthan.	
		45

Text/Reference Book:

- **1.** Panigrahi, A.K. and AlakaSahu, 2014 A text book of Environmental studies. Giribala Publications, Berhampur.
- 2. Carson, R. 2002 Silent spring. Houghton Mittlin Harcourt
- 3. Gleeson, B. and Low, N. (eds) 1999 Global ethics and environment. London
- 4. Odum, EP, Odum, HT and Andrews, J. 1971- Fundamentals of Ecology, Philadelphia, Saunders.
- **5.** Singh, JS, Singh, SP and Gupta SR. 2014 Ecology, Environmental Science and conservation. S. Chand Publications, New Delhi.
- 6. Smith, R.L. (2008); Ecology and Field biology, USA

Model Curriculum

AY: 2020-21

Semester: IV

Instrumentation Engineering

Course Code : IN401

Title of the Course : Fundamental of Optical Communication

		Course Sch	eme		Evaluation Scheme (Theory)				
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE IE ES		ESE	Total
3	0	0	3	3	3	10	10	80	100

- 1. *Recognize* concept of electronic communication using modulation and demodulation.
- 2. Understand principles and Concept of various digital modulation techniques.
- 3. *Examine* various types of light sources and detectors used in optical communication.
- 4. *Design* the optical fiber communication system using various components.
- 5. *Elaborate* the different applications of optical fiber used in industries.

Units	Contents	Hours
1	Module 1: Basics of Modulation	9
	Need for modulation, Types: AM, FM, PM. Amplitude Modulation:	
	Modulation index-definition, its effect on modulated signal, simple	
	numerical. Mathematical representation of amplitude modulated wave &	
	its meaning. Block diagram of AM transmitter and its operation. A.M and FM demodulation.	
2	Module 2: Radio Receivers and Digital Communication	8
	Radio Receiver Types, block diagram of AM and FM receiver and	
	characteristics of receiver. Introduction of Digital Communication, PCM,	
	DPCM, DM.	
3	Module 3: Optical Source & Detector	9
	Fundamentals of light, Electromagnetic spectrum of light, Characteristics	
	of light sources, Light Sources: standard light source, light emitting	
	diode, LCD and LED displays, and various types of LASER.	
	Photo detector: principal of photo detector and various types of photo	
4	detectors.	10
4	Module 4: Fiber optic communications system	10
	Expring the provided and the properties of the provided of the provided the provide	
	transmission system Ontical fiber communication Counling	
	components: couplers splices and connectors Losses and dispersion in	
	optic fiber. Fiber optic network and optical power budget.	
5	Module 5: Optical Instrument	9
_	Opto-Couplers, Optical fiber sensors, Optical fiber techniques for	
	measurement of temperature, Level, Pressure, Flow, Displacement.	
	Industrial applications of Laser: Laser welding, Distance measurement,	
	Military and Medicine applications, Design concept of optical power	
	meter, OTDR	
		45

- 1. George Kennedy, *Electronic Communication Systems* by (TATA Mc-Graw Hill 5th Edition)
- 2. P. Ramakrishna Rao, Digital Communication (Tata Mc-Graw Hill)
- **3.** John M. Senior, *Optical fiber communications: principles and practice* (Prentice Hall of India, second Edition)

- 1. Simon Haykin, Digital Communications Systems (wiley student edition)
- 2. Louis E Frenzel, Communication Electronics (TATA Mc-Graw Hill 5th Edition)
- 3. Gered Keiser, Optical fiber communications (Tata McGraw Hill, 4th edition.)

Course Code : IN402

Course Scheme Evaluation Scheme (Theory) Duration of paper, MSE IE ESE Tutorial Practical Periods/week Credits Total Lecture hrs 0 100 3 1 3 3 10 10 80 3

Title of the Course : Digital Circuits and Fundamentals of Microprocessors

- **1.** *Define* the analog, digital signals, switching and *acquire* the concepts of number systems and codes.
- **2.** *Implement* the logic expression by the concept of Boolean laws and K-map using logic gates.
- 3. *Design* combinational and sequential logic circuits using required digital IC.
- **4.** *Grasp* the timing diagram for 8085 microprocessor instruction and categorize the memory interfacing techniques with 8085.
- 5. *Develop* a logical program to generate/manipulate output from given data.

Units	Contents	Hours
1	Module 1: Number Systems	09
	Boolean Algebra, Basic logic circuits and features of different Logic	
	families, truth tables, Demorgan's law, basic combinational logic circuits	
	and design, sum of product and product of sum, simplification using K-	
	maps, SSI, MSI, LSI & VLSI circuit classification	
2	Module 2: Combinational Logic	09
	Decoders, Encoders, Multiplexers, Demultiplexers, Code converters,	
	Parity circuit its and comparators, Arithmetic modules - Adders,	
	Subtractions (Half and Full), BCD Adder/Subtractor.	
3	Module 3: Basic Sequential Circuits	09
	Latches and flip-flops: SR-flip flop, D-flip-flop, JK flip-flop, T flip-flop,	
	Race around Condition, J-K Master Slave Flip flop, Conversion of one	
	type flip-flop to another type, Counters, types of Counters, Design of	
	Mod N counters Using K-map, Lock Free Counters, Up down Counter.	
4	Module 4: Introduction to 8085 Microprocessor	09
	Architecture, instruction set, Timing diagrams, Flags, addressing modes,	
	Assembly language programming, interrupts.	
5	Module 5: Memory Organization & Interfacing	09
	Interfacing I/O devices PPI 8255, 8279 and its organization & interfacing	
	with 8085.	
		45

- 1. Morris Mano, *Digital Design*, Prentice-Hall, 2007
- 2. A. Anand Kumar, Fundamental of Digital Electronics.
- 3. Ramesh Gaonkar Microprocessor Architecture Programming & Applications with 8085.

- 1. R. P. Jain, *Digital Electronics* 3 Edition 2003 by TATA McGraw-Hill.
- 2. A. P. Godse, *Digital circuit & design*.
- 3. A. P. Godse, *Microprocessor Techniques*, Technical Publication.

Course Code : IN403

Title of the Course : Automatic Control System

Course Scheme				Evaluation Scheme (Theory)					
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	0	0	3	3	3	10	10	80	100

- 1. *Recognize* the basic elements of feedback control systems.
- 2. *Identify* the mathematical model of linear time-invariant systems
- 3. *Determine* the time domain performance characteristics of LTI systems.
- 4. Assess the stability of LTI systems using time and frequency domain criteria.
- **5.** Get familiar with modern control theory.

Units	Contents	Hours
1	Module 1: Introduction to Control Systems :	09
	Introduction, brief classification of control systems: Representation of:	
	Electrical, mechanical, electromechanical, thermal, pneumatic, hydraulic	
	systems, with differential equations. Concept of transfer function.	
2	Module 2: TF, block diagram algebra and signal flow graph	09
	Representation of transfer functions of electrical, mechanical with force	
	to voltage and force to current analogies. Block diagram algebra, Signal	
	flow graph.	
3	Module 3: Time domain analysis of control systems	09
	Standard test signals, first order, second order systems and their response,	
	Time domain specifications of first order and second order control	
	systems, derivations of time domain specifications. Static error constants	
	(kp, kv, ka, ess), dynamic error constants.	
4	Module 4: Stability Analysis	09
	Concept of Stability in s domain, Classification of Stability (BIBO	
	stability and asymptotic stability), stability analysis by Hurwitz criterion	
	and Routh array, concept of relative stability and its analysis using Routh	
	allay. Root locus: Definition Evan's conditions for magnitude and angle	
	construction rules determination of system gain at any point on root	
	locus (from magnitude condition and by graphical method) Root locus of	
	systems with dead time: Concept, approximation of dead time and	
	construction rules.	
5	Module 5: Fundamentals of frequency response, Bode plot, with and	09
	without dead time, determination of transfer function from asymptotic	
	Bode plot, Polar plot, Nyquist plot.	
	Introduction to State Space	
	Terminology of state space (state, state variables, state equations, state	
	space), state space representation. Advantages of state space	
	representation over classical representation. Representation of state	

models: direct (companion I and II <i>i.e.</i> controllable canonical and observable canonical forms), parallel and cascade decomposition.	
	45

- 1. I. J. Nagrath, M. Gopal, "Control System Engineering", New Age International Publishers.
- 2. B. S. Manke, "Linear Control Systems", Khanna Publishers, New Delhi.
- 3. A. K. Jairath, "Problems and Solutions of Control Systems", CBS Publishes, New Delhi.

- 1. K.Ogata, "Modern Control Engineering", PHI, New Delhi.
- 2. Norman S. Nise, "Control System Engineering", John Wiley and Sons.
- 3. B. C. Kuo, "Automatic Control Systems", PHI, New Delhi

Course Code : IN404

Title of the Course

Course Scheme Evaluation Scheme (Theory) Duration of paper, MSE IE ESE Tutorial Practical Periods/week Credits Total Lecture hrs 0 4 0 4 4 10 10 80 100 3

: Industrial Instrumentation

- 1. *Enlist* sensors/transducers for the measurement of temperature, pressure, flow, and level.
- 2. *Illustrate* construction and working principle of various sensors/transducers.
- 3. *Choose* the appropriate sensor for measurement of physical parameters.
- 4. Evaluate various parameters of different sensors/transducers.
- 5. *Review* the applications of sensors for benefit of society

Units	Contents	Hours
1	Module 1: Temperature Measurement	09
	Introduction to temperature measurements, Temperature compensation,	
	Thermocouple, Resistance Temperature Detector, Thermistor and their	
	measuring circuits, Radiation pyrometers, Bimetallic thermometer and its	
	applications. IC temperature transducers. Transmitter Introduction.	
2	Module 2: Pressure Measurement	09
	Introduction, Definition and units, Manometer, elastic -bellows, bourdon	
	tube, and diaphragm type, Vacuum pressure measurement- McLeod	
	gauge, thermal conducting and ionization type, Iransducers for High	
	instrument.	
3	Module 3: Flow Measurement	09
	Basic measurement principle, Pipes Standards, Bernoulli's theorem,	
	differential pressure type (Orifice, Venturi, Pitot tube and nozzle),	
	variable area type, target type, magnetic, ultrasonic vortex shedding,	
	cross co- relation, positive displacement type, mass flow meter,	
4	Module 4.	09
-	Level transducers: For liquid and solids, float type displacer, air purge	0,
	method DP cell Illtrasonic radioactive transducers I evel Switches	
	reed switches microwave sensors	
	Smart Sensors: Smart sensors MFMS Nano sensors Semiconductor	
	sensors, Optical fiber sensors. Applications of these technologies in	
	various industry sectors	
5	Module 5: Allied sensors	09
	Conductivity cells, Humidity measurement, Psychrometer, hygrometer	
	(hair, wire and electrolysis type), dew point meter, piezoelectric humidity	
	meter, initrared conductance and capacitive type probes for moisture	
		45

- 1. Sawhney A.K., "Electrical & Electronic Measurements and Instrumentation", Dhanpat Rai Publications,2001
- 2. D.V.S. Murthi, "Instrumentation and Measurement Principles", PHI, New Delhi, Seconded. 2003.
- **3.** B. C. Nakra and K. K. Choudhari, "Instrumentation Measurements and Analysis" by, Tata McGraw Hill Education, Second ed., 2004.
- 4. D. Patranabis, 'Sensors and Transducers', Prentice Hall of India, 1999.

- 1. B.G. Liptak, "Process Measurement & Analysis", Chilton Book Company, Fourth ed., 2003.
- 2. E.O. Doebelin, "Measurement Systems", McGraw Hill, Fifth ed., 2003.
- 3. Sabrie Soloman, "Sensors Handbook", McGraw Hill Publication, First ed., 1998.
- **4.** K. Krishnaswamy, *Industrial Instrumentation*, New Age International Publishers, 2nd Edition, 2010.

Course Code : IN405

Title of the Course : Linear Integrated Circuits

Course Scheme				Evaluation	n Schem	e (Th	eory)		
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	0	0	3	3	3	10	10	80	100

- 1. *Infer* the ideal characteristics of op-amps.
- 2. *Grasp* the importance of feedback and its effect on the performance of op-amps.
- 3. *Design* the linear and non-linear applications using an op-amp.
- 4. *Develop* the circuits using timer IC 555 for desired application.
- 5. *Analyze* the waveforms generated by using various linear ICs.

Units	Contents	Hours
1	Module 1: Basic operational amplifier circuits:	09
	Classification of ICs and their comparison. Study of data sheets of 741,	
	324, OP-07, ac and dc analysis of differential amplifier, Op-amp ideal	
	characteristics and op-amp parameter. Differential amplifier stages	
	current sources, level shifting technique, Common mode and differential	
	mode gains and impedances of differential stages.	
2	Module 2: OP-amp with positive and negative feedback:	08
	Inverting, Non inverting and differential amplifier configuration and their	
	special cases. Summing, Subtractor, scaling, averaging, instrumentation	
	amplifier, integrator and differentiator, V to I and I to V converters, Log	
	and Antilog Amplifier, Multiplier and Divider, Analog Computation.	
3	Module 3: Active filters and oscillators:	09
	Frequency response of op-amp. Low pass, high pass first and second	
	order, band pass, band reject and all pass Butterworth filters. Introduction	
	to Oscillator using op-amps: Phase Shift Oscillator, Wien Bridge	
	Oscillator, Quadrature Oscillator, Square-Wave, Triangular-Wave and	
	Saw-tooth Wave Generators	
4	Module 4: Comparators and converters:	09
	Basic Comparators, Zero Crossing Detector, Schmitt Trigger, Voltage	
	Limiters, Window Detector, Clippers and Clampers, Absolute Value	
	Output Circuit, Sample and Hold Circuit, Precision Rectifier. D/A	
	converters- Binary-weighted resistors, R and 2R resistors. A/D	
	converters- Flash type, Counter Ramp type, Single Slope, Dual Slope,	
	Successive Approximation type.	
5	Module 5: Specialized IC Applications:	10
	Timer IC 555 and its applications, Functional Diagram of 555 Timer,	
	Monostable and Astable Multivibrator. Phase Locked Loops IC's 565 and	
	its applications. Voltage Regulators: Fixed Voltage, Adjustable Voltage,	
	Switching Regulators, IC 723, 78xx and 79xx.	
		45

- 1. D. Roy Choudhry, Shail Jain, *Linear Integrated Circuit*, New Age International Pvt. Ltd.
- 2. Ramakant A. Gaikwad, *Op-amps and Linear Integrated Circuits*, Fourth edition, PHI Publication, 2002
- **3.** S. Salivahanan, V. S. Kanchana Bhaaskaran, *Linear Integrated Circuits*, Tata McGraw Hill Edition New Delhi.

- 1. Robert F. Coughlin and Frederick F. Driscoll, *Operational Amplifiers and Linear Integrated Circuits*, Sixth edition, Pearson Publication.
- 2. B. S. Sonde, System design using Integrated Circuits, New Age Pub, 2nd Edition, 2001.
- **3.** Sergio Franco, *Design with Op-amp and Analog Integrated circuits*, Tata McGraw Hill Edition New Delhi.

Course Code : IN406

Title of the Course : Automatic Control System Laboratory

	Course	Scheme	Evaluation	on Scheme (La	boratory)		
Lecture	Tutorial	Practical	Credits	ts TW POE Tota			
0	0	2	1	25	25	50	

Course Outcomes: After completion of the course, the student will be able to:

- **1.** Derive the transfer function of a physical system and identify the control actions present in the given system.
- 2. Derive time domain specification and error coefficients for the given system.
- **3.** Analyze the stability of the given system and obtain the root locus for the same.
- **4.** Analyze the given system in frequency domain, obtain the bode plot of the same and derive frequency domain specifications of the same.
- 5. Analyze the given system in frequency domain, obtain the polar plot of the same.

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least eight experiments based on contents of syllabi in the form of a journal and necessary documentation.

Suggested list of experiments: Students are expected to perform minimum 08 experiments.

- **1.** Write a Program for obtaining a transfer function from the given poles and zeros and vice versa.
- 2. Write a Program to obtain step, ramp and impulse response of a of TF of given physical system.
- **3.** Write a Program for obtaining transient response of a TF of given physical system and compute time domain specifications of the same.
- 4. Derive transfer function of a typical process loop component (DC motor, heater etc)
- 5. Write a Program for obtaining root locus of a transfer function and observe the effect of addition of pole/zero.
- **6.** Write a Program for obtaining Bode plot of a transfer function and compute frequency domain specifications of the same.
- 7. Write a Program for obtaining polar plot of the system and determine system stability.
- 8. Write a Program for obtaining Nyquist plot of the system and determine system stability

Text Book:

- 1. I. J. Nagrath, M. Gopal, "Control System Engineering", New Age International Publishers.
- 2. B. S. Manke, "Linear Control Systems", Khanna Publishers, New Delhi.
- 3. A. K. Jairath, "Problems and Solutions of Control Systems", CBS Publishes, New Delhi.

- 1. K.Ogata, "Modern Control Engineering", PHI, New Delhi.
- 2. Norman S. Nise, "Control System Engineering", John Wiley and Sons.
- 3. B. C. Kuo, "Automatic Control Systems", PHI, New Delhi
- 4. Sabrie Soloman, "Sensors Handbook", McGraw Hill Publication, First ed., 1998.

Course Code : IN407

Title of the Course : Industrial Instrumentation Laboratory

	Course	Scheme	Evaluation	on Scheme (La	boratory)	
Lecture Tutorial Practical Credits				TW	POE	Total
0	0	2	1	25	25	50

Course Outcomes: After completion of the course, the student will be able to:

- 1. *Measure* the physical parameters using various sensors/transducers
- 2. *Demonstrate* the performance characteristics of various transducers.
- 3. *Calculate* volumetric flow rate using flow sensors.
- 4. *Adapt* the standard practices for operating the sensor/transducer.
- 5. *Analyze* the causes of error in the measurement.

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least eight experiments based on contents of syllabi in the form of a journal and necessary documentation.

Suggested list of experiments: Students are expected to perform minimum 08 experiments.

- 1. Calculate volumetric flow using Orifice plate, Venturi and Rotameter.
- 2. Analyze the performance of Temperature transducers.
- 3. Characterization Level measurement system.
- 4. Demonstrate the working of Ultrasonic sensor/transmitter for level measurement.
- 5. Calibration of Pressure Gauges using Dead Weight Tester.
- 6. Measurement of pressure using elastic elements.
- 7. Study of Psychrometer for Measurement of Relative humidity.
- 8. Measurement of flow using pitot tube.
- 9. Demonstrate the working of Conductivity meter.
- **10.** Study of various transmitters.

Text Book:

- 1. Sawhney A.K., "Electrical & Electronic Measurements and Instrumentation", Dhanpat Rai Publications, 2001
- 2. D.V.S. Murthi, "Instrumentation and Measurement Principles", PHI, New Delhi, Seconded. 2003.
- **3.** B. C. Nakra and K. K. Choudhari, "Instrumentation Measurements and Analysis" by, Tata McGraw Hill Education, Second ed., 2004.
- 4. D. Patranabis, 'Sensors and Transducers', Prentice Hall of India, 1999.

- 1. B.G. Liptak, "Process Measurement & Analysis", Chilton Book Company, Fourthed., 2003.
- 2. E.O. Doebelin, "Measurement Systems", McGraw Hill, Fifth ed., 2003.
- 3. Sabrie Soloman, "Sensors Handbook", McGraw Hill Publication, First ed., 1998.
- **4.** K. Krishnaswamy, *Industrial Instrumentation*, New Age International Publishers, 2nd Edition, 2010.

Course Code : IN408

Title of the Course : Linear Integrated Circuits Laboratory

	Course	Scheme	Evaluation	on Scheme (La	boratory)	
Lecture	Tutorial	Tutorial Practical Credits TW POE 7				Total
0	0	2	1	25	25	50

Course Outcomes: After completion of the course, the student will be able to:

- 1. *Measure* the typical Op-amp parameters experimentally.
- 2. *Build* the linear application circuits using Op-amp.
- 3. *Implement* high pass and low pass filters for a given specifications.
- 4. Design positive feedback circuits for waveform generation using timer IC 555.
- 5. *Exemplify* the usage of constant voltage regulator ICs.

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least eight experiments based on contents of syllabi in the form of a journal and necessary documentation.

Suggested list of experiments: Students are expected to perform minimum 08 experiments.

- **1.** To measure Op-amp parameters: Input offset voltage, input bias current, Input offset current, CMRR and skew rate.
- **2.** To verify experimentally and theoretically closed loop voltage gain using 741 op-amp for the following: Inverting Amplifier, Non-inverting Amplifier and Voltage Follower.
- **3.** To design the integrator and differentiator circuits.
- 4. To implement summing (Adder) amplifier circuit using operational amplifier.
- **5.** Build the Square Wave Oscillator for f0 = 1 KHz.
- 6. Construct the precision rectifier and observe the output waveforms.
- 7. Design second order low pass filter and high pass filter and plot frequency response.
- **8.** Design Astable Multivibrator using timer 555 IC for 1 KHz and 63% duty cycle and observe the waveform.
- 9. Implement a Schmitt Trigger Circuit using IC 741 and test its output waveforms.
- 10. Exemplify the usage of three terminal fixed voltage regulators

Text Book:

- 1. D. Roy Choudhry, Shail Jain, Linear Integrated Circuit, New Age International Pvt. Ltd.
- 2. Ramakant A. Gaikwad, *Op-amps and Linear Integrated Circuits*, Fourth edition, PHI Publication, 2002
- **3.** S. Salivahanan, V. S. Kanchana Bhaaskaran, *Linear Integrated Circuits*, Tata McGraw Hill Edition New Delhi

- **1.** Robert F. Coughlin and Frederick F. Driscoll, *Operational Amplifiers and Linear Integrated Circuits,* Sixth edition, Pearson Publication.
- 2. B. S. Sonde, System design using Integrated Circuits, New Age Pub, 2nd Edition, 2001.
- 3. Sergio Franco, *Design*