B.E. Civil Engineering-VIII Sem

Course Code: CE - 801

Course: Quantity Surveying and Estimation

Course scheme				Evaluation scheme (Theory)					
lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper hour	MSE	IE	ESE	Total
3	01	-	04	03	4 Hr	10	10	80	100

Unit	CONTENTS	Hours								
Ι	(a)Importance, purpose of quantity estimate, Mode and unit of	10								
	measurement as per I.S.1200. Method and stages of estimates. Item of									
	work and Description of an item of work. Approximate estimation of									
	Civil Engineering works.									
	(b)Proposal and Development of project, Nature of contract between									
	owner &Architect/Engineer, Duties & liabilities of Architect/Engineer,									
	Architect /Engineers normal professional services, various important									
	terminology required like work charge establishment ,muster roll,									
	contingencies, cent age charges, measurement book, overheads etc.									
II	Quantity & cost estimates.	08								
	(a) Methods of detailed estimates, forms used for detailed estimates,									
	working out the quantities of various materials required for construction									
	of various Civil Engineering works such as Building, culverts, hydraulic									
	structure, water supply & sanitary works, road works, retaining walls ,									
	water tanks etc.									
	(b) Earthwork estimates in road (including hill road), canals etc.									
	(c) Detailed estimate of steel in RCC works, bar bending schedule.									
III	Specifications: Purpose & principles of specifications. Types of	09								
	specification, Developing detailed specifications of important items.									
	Cost build up: purpose & principles, Importance of Current schedule									
	rates (CSR) in cost estimate, factors affecting analysis of rates,									
	information from National building organization. Task work, factors									
	affecting task work, Markets rates escalation.									
IV	Arranging works: P.W.D.as the construction agency, method of carrying	08								
	out works, arranging contract works, pretender & contract planning,									
	tender notice, acceptance of tender, essentials of contract, type of									

	contract, conditions of contract, contract documents, various schedules in	
	tender documents, measurement & payment to contractor, Indian contract	
	law, and the Engineering contract, Land acquisition act, legal aspects of	
	various contract provisions, arbitration.	
V	Valuation: purpose of valuation, Factors affecting value of property price	10
	& cost, market value, potential value, sentimental value, scrap value,	
	reversionary value etc. Real Estate, net & gross return, tenure of land,	
	valuation of land, free hold & lease hold , sinking fund, depreciation ,	
	capitalized value, methods of valuation, differed annuity, Time-cost	
	relationship, valuation tables, rent fixation.	
	Cost accounting: various methods classification of cost, direct & indirect	
	charges, distribution of overheads, M.A.S.Account, issue rates & store	
	account.	

REFERENCES

- 1. Estimation & Costing by B.N.Dutta UBS Publications Distribution (P) Ltd.
- 2. Estimation & Costing (civil) by D.D.Kohli& Ar.R.C.Kohali(S.chand & company pvt.ltd.)
- 3. Estimating construction costs by Robert L.Peurify&Garold D.Oberlender ,Tata McGraw-Hill .
- 4. Construction Planning & Management by P.S.Gahalot & B.M.Dhir, New age International (P) Ltd. Publication.

Questions paper Pattern:

*One compulsory question on building estimate.

B.E. Civil Engineering-VIII Sem

Course: Quantity Surveying And Estimation

	Course scheme Evaluation scheme (LABORATORY)										
	Course schemeEvaluation scheme (Practical)										
lecture	Tutorial	Practical	Periods/week	Credits	TW POE Total						
<u>3</u> <u>3</u> <u>2</u> <u>25</u> <u>25</u> <u>50</u>											

Course scheme Evaluation scheme (LABORATORY)

The candidate shall submit 08 experiments from the following.

- 1. Detailed building estimate of load bearing structure & framed structure
- 2. A complete set of contract document including specifications.
- 3. Detailed estimate road work .
- 4. Rate analysis of 10 major item of building.
- 5. Specification of 10 major item of building.
- 6. Valuation & rate fixing.
- 7. Calculation of reinforcement in RCC with bar bending schedule.
- 8. Study of IS-1200.

Course Code: CE – 813

- 9. Expert lecture by legal advisor on various legal aspects of contracts & report by students.
- 10. Site visit to: Study of schedule of rates & comparison with market rates & report by the students.

Practical Examination shall consist of written test & viva-voce based on the syllabus & sessional work.

B.E. Civil Engineering, VIII Sem

COURSE CODE: CE -802

COURSE: TRANSPORTATION ENGINEERING II

Course scheme				Evaluation scheme (Theory)					
lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper	MSE	IE	ESE	Total
					noui				
3	1	-	4	3	3 Hr	10	10	80	100

UNIT	TOPICS	HOURS
	Railway Engineering : Permanent way, gauges, coning of wheels	
т	and tilting of rails.Rail types, wear and failure.Sleepers, rail	5
1	Fixtures and fastening, ballast cushion.Traction and Tractive	5
	resistance, hauling capacity and tractive effort of locomotives.	
	Geometric design of railway track, Gauge, Gradients speed, super	
	elevation cant deficiency Negative super elevation, curves, length	
	of transition curves, grade compensations. Points of crossings :	10
11	Left and right hand turnout, design calculations for turnout &	12
	Crossover, railway track functions. Station and Yards: Types,	
	functions facilities & equipment.	
	Railway track construction, study of ballast less & magley tracks	
	inspection & modem, techniques, of maintenance. Push through	
	Technique.	
	Tunnel Engineering :Tunnel alignment-Tunnel	0
111	Surveys, Tunneling methods in Hard Rock and Soft	8
	Grounds, Tunnel lining. Drainage, Ventilation and lighting of	
	tunnels, Advances in Tunneling&Tunnel Boring Mechanics, Case	
	studies.	
	Airport Engineering : Aircraft characteristics, Airport site	
	Selection. Modem aircrafts.Airport obstructions: Zoning Laws,	
	imaginary surfaces, Approach and turning Zone, clear zone, vert.	
IV	Clearance for Highway &Railway. Runway and taxiway design:	9
	Windrose, cross wind component, Runway Orientation and	
	configuration. Basic runway length and correction, runway	
	geometric design standards. Taxiway Layout and exit taxiways.	
	Airport layout. Airport classification: Terminal Area Aircraft	11
V	parking & parking system. Unit terminal concept, Aprons,	11

Hangers, internationals Airports layouts, phase development.	
Visual Aids: AirPort marking and Lighting for runway, Taxiway	
and other areas.Air traffic control: Need, network, control aids,	
instrumental landing systems, advances in air traffic controls.	

Text Books :

- 1. Railway Engineering : Saxena and Arora, DhanpatRai& Sons
- 2. Airport Engineering : Khanna and Arora, Nem Chandra & Brothers, Roorkee.
- 3. Tunnel Engineering : S. Srinivasan, Publishing House Charotar.

Reference Book :

1. Airport Engineering : G. Venkatappa Rao, Tata Mc. Graw-Hill Publishing

- 2. Planning and Design of Airports : Robert Herorjeff, Mc.Graw-Hill Publishing
- 3. Railway Tracks Engineering : J.S.Mundrey, Tata Mc.Graw-Hill Publishing

4. Introduction to Tunnel Construction : David Chapman, Nicole Metje, Alfred Stark, Span Press, New York.

Elective III- B.E. Civil Engineering, VIII Sem

COURSE CODE: CE -803

COURSE: MACHINE FOUNDATION

Course scheme				Evaluation scheme (Theory)					
lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper hour	MSE	IE	ESE	Total
3	1	-	4	3	3 Hr	10	10	80	100

Unit	CONTENTS	Hours
Ι	Introduction: Types of machines, Types of machine foundations,	9
	General requirements of machine foundation, General criteria for design,	
	Permissible amplitude.	
	Vibration analysis of Machine Foundation: Methods of Analysis-	
	Elastic Half space method, Linear elastic Weightless Spring Method etc.	
II	Foundations of reciprocating machines: Modes of vibrations, Effect of	9
	footing shape on vibration response, Dynamic response of embedded	
	block foundation, Design criteria, Design procedure	
III	Foundation of impact type machines: Arrangements of foundation for	9
	different types of hammers, Dynamic analysis, Design procedure for	
	hammer foundations	
IV	Foundation of rotary machine: Design criteria, Special considerations,	9
	Two dimensional analysis - Resonant method, Amplitude method and	
	combined method.	
V	Vibration isolation & control: Force isolation & motion isolation,	9
	Methods of isolation in machine foundations Isolating materials and their	
	properties Constructional details of machine foundation	

Books recommended:

1. Handbook of Machine Foundation , Srinivasunlu and Vaidyanathanan, SpringerNetherlands, 2008.

2. Soil Dynamic and Machine Foundation, Swami Saran, Second edition, GalgotiaPublication, 2009.

3. Vibrations of Soils and Foundations, F. E. Richards J. R. Hall and R. D. Woods, PHI,1970.

4. Vibration Analysis and Foundation Dynamics, N. S. V. KameswaraRao, Meeler Pub., 1998.

5. Foundation for Machines: Analysis and Design, SamsherPrakash and V. K. Puri, JohnWiley & Sons., 1998.

6. Soil Dynamics, SamasherPrakash, MGH, 1981.

Elective III- B.E. Civil Engineering, VIII Sem

COURSE CODE: CE -804

COURSE: ADVANCE SURVEYING

Course scheme				Evaluation scheme (Theory)					
lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper hour	MSE	IE	ESE	Total
3	1	-	4	3	3 Hr	10	10	80	100

Unit	CONTENTS	Hours
Ι	Triangulation and trilateration Triangulation, Network, strength of	9
	figures, selection of stations, inter, Visibility , satellite stations,	
	measurements and computations, trigonometric leveling	
II	Geodesy: Earth, spherical trigonometry, convergence of meridians,	9
	latitude computation, determination of bearing and distance, map	
	projection.	
III	Photogrammetry : Principle and types of aerial photographs, stereoscopy,	9
	Map Vs Mosaic, ground control, Parallax measurements for height	
	determinations.	
IV	Hydrographic survey: Shoreline and river survey, soundings? methods,	9
	equipment and ranges locating sounding	
V	Global Positioning System (GPS): GPS principles, Satellite navigation	9
	System, GPS? Space segment, Control segment, User segment, GPS	
	satellite signals, Receivers, Static, Kinematic and Differential GPS	

REFERENCES:

- 1. Surveying Vol.2& 3 : Punmia .B.C., laxmi publications
- 2. Surveying Vol 2&3 : Arora.K.R., Standard book house publication
- 3. Higher Surveying : A. M.Chandra , New Age International publication
- 4. Engineering Survey : W. Schofield; Taylor & Francis publication

Elective III- B.E. Civil Engineering, VIIIth Sem

COURSE CODE: CE -805

COURSE: Earthquake Engineering

Course scheme				Evaluation scheme (Theory)					
lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper hour	MSE	IE	ESE	Total
3	1	-	4	3	3 Hr	10	10	80	100

Unit	CONTENTS	Hours
Ι	Introduction to earthquakes: Geology of earth, configuration of tectonic	9
	plates in a globe, influence of Geology on earthquake, behavior of plates,	
	their motion and effects, causes of earthquake and their characteristics,	
	Earthquake parameters, magnitudes, intensity, scales, seismic zoning of	
	India, seismic coefficients for different zones, Natural disasters,	
	mitigation and social aspects. Lessons from past earthquake: - Study of	
	damages caused due to past, earthquakes in/ outside India and remedial	
	measures.	
II	Theory of vibrations: Vibrations - definition, causes, classifications.	9
	Single Degree of Freedom systems (SDOF) - free, forced, damped, un-	
	damped vibrations. Introduction to Multi-degrees of Freedom systems	
	(MDOF) - derivations of related equations and solutions to two degree	
	and three degree of freedom systems.	
III	Seismic design of RC structure: Effect of earthquake on RC structure, IS	9
	provision, Seismic coefficient method. Basic requirement, estimation of	
	story shear, effect of unsymmetrical geometry and masses, mass center	
	and stiffness center, estimation of story shear and tensional moments for	
	unsymmetrical buildings. IS code provision to response spectrum, Modal	
	analysis for RCC frame, Design of multistoried building, concept of	
	ductile detailing, IS 13920 provisions for RC frame.	
IV	Seismic foundation design: Type of forces generated due to earthquake,	9
	effects on different types of foundation, design of RCC isolated footing	
	for earthquake loading, liquefaction, causes and its remedial measure.	
V	Introduction of different control systems: Passive control: base isolation	9
	and active control: bracing system, TMD etc and some latest invention.	
	Restoration and retrofitting: Evaluation of existing buildings, aging,	
	weathering, development of cracks, improper load Path, asymmetry,	

materials and equipments for restoring and retrofitting, methodology of	
retrofitting for walls, slabs roofs columns, foundations etc. for buildings	
in stones, bricks, RCC.	

Notes: Every design should confirm to latest versions of IS 1893, 4326, 13920, 13827, 13828, 13935

REFERENCE BOOKS

1. Earthquake resistance design of structure by Duggal- Oxford University Press.

2. Dynamics of structure by Clough R.W. and Penzin J. McGraw Hill Civil Engineering Series

- 3. Dynamics of structure by Anil Chopra, Prentice Hall India Publication
- 4. Dynamics of structure by Mario Paz, CBSPD Publication
- 5 .Earthquake Resistant Design by David J. Downik, John Wiley and Sons Publication
- 6. Earthquake Tips NICEE, IIT, Kanpur
- 7. Elements of Earthquake Engineering by Jaikrishna and Chandarsekaran.
- 8. Geo-technical Earthquake Engineering by Kramer S. L. Prentice Hall India Publication
- 9. Introduction to Structural Dynamics by John M. Biggs
- 10. Mechanical Vibrations by V. P. Singh
- 11. Relevant Latest Revisions of IS codes.

Elective III- B.E. Civil Engineering, VIIIth Sem

COURSE CODE: CE - 806

COURSE: PAVEMENT DESIGN

Course scheme				Evaluation scheme (Theory)					
lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper hour	MSE	IE	ESE	Total
3	1	-	4	4	3 Hr	10	10	80	100

Unit	CONTENTS	Hours
Ι	General: Pavement design factors, components of flexible and rigid	7
	pavement and their functions, characteristics of highway and airfield	l
	pavement.	l
	Design parameters: Design wheel load, Standard axle load and wheel	l
	assemblies for road vehicles. Under carriage system for aircraft, tyre and	l
	contact pressure, contact area, imprints, computation of ESWL for	l
	flexible and rigid pavements. Load repetitions and distributions of traffic	l
	for highway and airfield, pavement, airport traffic areas, Serviceability	l
	concept.	l
II	Material characteristics: AASHO subgrade soil classification, CBR	9
	test, North Dakota cone bearing value, plate load test for K-value,	l
	modulus of elasticity and Poisson's ratio of subgrade soils, Marshall's	
	method of Bituminous mix design, Surface dressing, Premix carpet, Mix	l
	seal surfacing , Semi-dense carpet, Asphaltic concrete, Bituminous	
	Macadam Binder course, Dense Bituminous Macadam Binder course,	
	Modulus of rupture, modulus of elasticity, Poisson's ratio and coefficient	
	of thermal expansion of concrete, Layer equivalent concepts.	
III	Analysis of flexible and rigid pavements: Stress, strain, deflection	11
	analysis one layer system by Boussinesq's, Two, three layer system by	l
	Burmister's, and multi layered flexible pavement system. Stress and	
	deflections for rigid pavements due to load and temperature, influence	
	charts, ultimate load analysis joints.	l
	Highway Pavement Design: Flexible: North Dakota cone, Design using	
	the latest IRC code, Triaxial (Kansas), AASHTO method of design.	l
	Rigid: Design using the latest IRC code, PCA, AASHTO method of	
	design, design of joints and reinforcements	ſ
IV	Airfield pavement design:	8

	a) Flexible: FAA, US Corps of engineering, CBR, Mcleod	
	(Canadian)	l
	b) Rigid :FAA, PCA& LCN, definitions of ACN, PCN, LCN.	
	Calculation of LCN value. Ultimate load analysis and yield lines	l
	patterns method	1
V	Pavement testing and evaluation: field density, CBR, plate load	10
	test, Pavement Failures in both Flexible Pavement & Rigid Pavement -	l
	types and causes, condition surveys and surface evaluation for	l
	unevenness, rut depth, profilometers, bump integrators, Benkleman beam	l
	deflection study.	l
		l
	Strengthening of pavements: design of flexible, composite and rigid	1
	overlays for flexible and rigid pavements, repairs, maintenance and	l
	rehabilitation of pavements	l
		1
		l .

Recommended Books:

- 1. Principles of Pavement Design by H.J.Yoder and Witczak, John wiley and sons.
- 2. Highway Engineering by Khanna O.P, Justo C.G., , Nem Chand Publishers
- 3. Pavement Analysis and Design by Yang H. Huang 2nd Edition, Pearson Education, Inc., Pearson Prentice Hall Company.
- 4. Airport Engineering by G VenkatappaRao, Tata McGraw –Hill Publishing Company Ltd.
- 5. IRC-37(Latest Code))Guide lines for Design of Flexible Pavement
- 6. IRC -58-(Latest code) Guide lines for Design of Plain Jointed Rigid Pavement for highways
- 7. MOST Specifications for Road and Bridge Works, 1994 (Third Revision)

Reference Books:

a. Airport Engineering by Khanna and Arora, Nemchand& Brothers.

Elective III- B.E. Civil Engineering, VIIIth Sem

COURSE CODE: CE -807

COURSE: Environmental Impact Assessment

Course scheme				Evaluation scheme (Theory)					
lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper hour	MSE	IE	ESE	Total
3	1	-	4	3	3 Hr	10	10	80	100

Unit	CONTENTS	Hours
Ι	CONCEPTUAL FACTS OF EIA:	9
	Introduction, Definition and Scope of EIA, Objectives in EIA, Basic EIA	
	Principles, Classification of EIA: Strategic EIA (SEIA), Regional EIA,	
	Sectoral EIA, Project Level EIA and Life Cycle Assessment, Project	
	Cycle, Grouping of Environmental Impacts: Direct Impacts, Indirect	
	Impacts, Cumulative Impacts and Induced Impacts. Significance of	
	Impacts: Criteria/Methodology to Determine the Significance of the	
	Identified Impacts.	
II	BASELINE DATA ACQUISITION:	9
	Environmental Inventory, Data Products and Sources: thematic data,	
	topographical data, collateral data and field data. Environmental Baseline	
	Monitoring (EBM), Preliminary Study to determine impact significance,	
	Environmental Monitoring network Design, Monitoring Stations, Air	
	quality data acquisition, Water Quality data acquisition, soil data,	
	socioeconomic data and biological data acquisition. Impact on	
	Environmental Components: Significance of Impacts, Criteria to	
	determine the significance of the identified Impacts.	
III	PLANNING AND MANAGEMENT OF IMPACT STUDIES:	9
	Conceptual Approach for Environmental Impact Studies, Proposal	
	Development, Interdisciplinary Team Formations, Team Leader	
	Selection and Duties, General Study Management, Fiscal Control.	
IV	OPERATIONAL ASPECTS OF EIA:	9
	Screening: Application for Prior Screening for Environmental Clearance,	
	Screening Criteria; Category A Projects, Category B Projects, Criteria for	
	Classification of Category B1 and B2 Projects, Consistency with other	
	Requirements and Siting Guidelines. Scoping: Identification of	
	Appropriate Valued Environmental Components (VEC), Identification of	
	Impacts, Information in Form 1, Structure of a Pre-feasibility Report.	

	Public consultation: Appraisal, Decision Making, Post-clearance							
	Monitoring Protocol.							
V	METHODS FOR IMPACT IDENTIFICATION:	9						
	Background Information, Interaction-Matrix Methodologies: simple							
	matrices, stepped matrices, development of a simple matrix, other types							
	of matrices, summary observations on matrices, Network Methodologies:							
	Checklist methodologies, simple checklists, descriptive Checklists,							
	summary observations on simple and descriptive Checklists.							
	PREDICTION OF IMPACTS (AIR AND WATER): Air Environment:							
	Basic information on air quality, Sources of Pollutants, effects of							
	pollutions, Conceptual approach for addressing air environment impacts,							
	Air quality standards, Impact Prediction, Impact significance.							
	Water Environment: Basic Information on surface-Water Quantity and							
	Quality, Conceptual Approach for Addressing Surface-Water-							
	Environment Impacts, Identification of Surface-Water Quantity or							
	Quality Impacts, Procurement of Relevant Surface-Water Quantity-							
	Quality Standards, Impact Predictions, Assessment of ImpacSignificance.							

REFERENCES:

1. Textbook of Environmental Science & Technology by M.Anji Reddy, BS Publications, 2010

- 2. Technological guidance manuals of EIA. MoEF.
- 3. EIA by Canter
- 4. Man and Environment, D.H.Carson 1976 Interactions Part I and III.
- 5. Environmental Impact Assessment, 2003, Y.Anjaneyulu, B.S Publications

6. Erickson, P.A.1979 Environmental Impact Assessment Principles and applications

7. Basic Concepts in Remote Sensing and Arial Photogrammetry, Lillesand and Keifer Prentice Hall Intl., 1994.

8. Renewable Energy Environment and Development, Hameswar Dayal Konark Publishers, Pvt., Ltd.

Elective IV-B.E. Civil Engineering-VIIIth Sem

Course Code: CE - 808

Course: Experimental Stress Analysis

Course scheme				Evaluation scheme (Theory)					
lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper hour	MSE	IE	ESE	Total
3	01	-	04	03	4 Hr	10	10	80	100

Unit	CONTENTS	Hours							
Ι	Introduction to experimental stress analysis, advantages of ESA	10							
	technique, Fundamental concept of strain measurement.								
	Development of ERSG, types, construction and material, Gauge								
	sensitivity and gauge factor, transverse sensitivity, correction for								
	transverse strain effect, Grid, Backing material, Adhesive, Mounting								
	method, checking gauge installation, Performance characteristics of foil								
	strain gauge, linearity, hysteresis, zero shift, environmental effect,								
	moisture proofing.								
II	Wheatstone bridge circuit, sensitivity, types, balancing of bridges,	08							
	constant current circuit, Transducer application, diaphragm pressure								
	transducer, displacement transducer, axial force transducer, bending								
	force transducer, torque transducer.								
III	Determination of principal strains, principal stresses, maximum shear	09							
	stress and principal angles, three and four element rectangular rosette,								
	delta rosette, tee rosette.								
	General principles, advantages and disadvantages, state of stress and laws								
	of failure, detection of cracks, types of brittle coating, test procedure,								
	calibration technique.								
IV	Basic optics related to photo elasticity, ordinary light, monochromatic	08							
	light, polarized light, natural and artificial, Stress optic law in two								
	dimensions at normal incidence, Material fringe value in terms of stress								
	function								
V	Plane polariscope, isoclinics, isochromatics, Circular polariscope,	10							
	different arrangements, isochromatics, Fractional fringe measurement,								
	Tardy's method , Babinet Soleil method, Selection and properties of								
	model materials, Calibration methods, circular disc, tensile specimen,								
	Separation methods, oblique incidence method, shear difference method								

REFERENCES

- 1. Experimental stress analysis by Dailly and Riley, McGraw Hill
- 2. Experimental stress analysis by Dr. Sadhu Singh, Khanna Publications
- 3. Experimental stress analysis by Holister Dove and Adams.
- 4. Photoelasticity Vol. I by Frecht
- 5. Applied stress analysis by Direlli
- 6. The strain gauge primer by Perry Listner

Elective IV- B.E. Civil Engineering, VIII Sem

COURSE CODE: CE 809 COURSE: ADVANCED DESIGN OF STEEL STRUCTURES

Course scheme				Evaluation scheme (Theory)					
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper hour	MSE	IE	ESE	Total
3	1	0	0	4	4	10	10	80	100

UNIT	CONTENT	HOUR
1	Analysis and design of industrial building with roof truss. Calculation of wind and earthquake forces. Gable frame with and without haunch IS code provision of IS	12
	800-2007	
2	Deign of overhead tank, pressed steel tank. Wind load calculation. Steel staging and its RCC foundation	10
3	Analysis and design of steel chimney. Wind load and earthquake load calculation, Maximum base shear. Design of foundation.	10
4	Design of Bridges, IRC loading, Deck and through Bridges, Moving load, plate girder and truss girder bridges.	13

References Books and I. S. Codes

1. Ram Chandra, Design of steel Structures, Volume II, Standard Book House, Delhi.

2. Punmia and Jain, Comprehensive Design of steel structure, Laxmi Publication, Delhi.

3. M Raghupathi, Design of steel structures, Tata McGraw Hill, New Delhi. 10/44

4. S K Duggal, Limit state design of steel structures, Tata McGraw Hill Education.

5. N Subramanian, Design of steel structures, Oxford University Press.

6. Sarwar Alam Raz—Structural Design in Steel---New Age International Publishers

7. IS: 800 - 2007, Code of Practice for General Construction in Steel, BIS, New Delhi.

8. IS: 800 - 1984, Code of Practice for General Construction in Steel, BIS, New Delhi.

9. IS: 801 - 1975, Code of Practice for use of cold formed light gauge steel structural

members in general building construction, BIS, New Delhi.

Elective IV- B.E. Civil Engineering, VIII Sem

COURSE CODE: CE -810

COURSE: WATER TRANSMISSION AND

DISTRIBUTION SYSTEM

Course scheme				Evaluation scheme (Theory)					
lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper hour	MSE	IE	ESE	Total
3	1	-	4	3	3 Hr	10	10	80	100

UNIT	TOPICS	HOURS
Ι	General Hydraulic Principles: Frictional head loss in pipes, different formulae, minor head loss in pipes, equivalent pipe Reservoir, Pumps and Valves: Impounding reservoir, Service and balancing reservoir, Three reservoir system, Multi reservoir system, pumps and pump co-ordinations, Valves- their types, Analysis of reservoir system with checks valves and pressure reducing valves.	6
Π	Reservoir capacity: Estimation of minimum required reservoir capacity using graphical and analytical method. Design of pumping main: Optimal design of pumping main considering pipe diameter as continuous and discrete variable.	12
III	Analysis of Water Distribution Networks: Types and parameters, Parameter relationship, Formulation of equations, Analysis of network using Hardy Cross method, Newton Raphson method and linear theory method.	9
IV	Node Flow Analysis (NFA): Difference between Node Head and Node Flow Analysis, Necessity of NFA, Bhave's approach- Node classification, node category compatibility, NFA theory. Design of Water Distribution Networks: Design of single source branching networks using critical path method, number of branching, configuration of looped networks using Graph Theory principles, selection of branching configuration using path concept	10

	and minimum spanning tree concept. Design of single source	
	looped networks using critical path method.	l
		l
		l
	Optimal Design Water Distribution Networks: Cost Head Loss	
V	Ratio (CHR) method- CHR criterion, Problem formulation, CHR	8
v	methodology for single source branching networks. Linear	
	programming formulation and solution using simplex method.	

Text Books :

- 1. Bhave P.R and Gupta (1991), "Analysis of flow in water distribution networks", Technomic Publishing Co. Lancaster, Pennsylvania, USA.
- 2. BhaveP.R , " Design of Water Distribution Networks" networks"Technomic Publishing CO. Lancaster, Pennsylvnia,USA.

Reference Books :

- 1. Jeppaon R.W.(1977), "Analysis of Flow in Pipe Networks" Ann Arbor Science. Ann Arbor Michigan, USA.
- 2. Walski. T.M.(1984)," Analysis of flow in water distribution networks"Technomic Publishing CO. Lancaster, Pennsylvnia,USA.

Elective IV- B.E. Civil Engineering, VIII Sem COURSE CODE: CE -811 COURSE: DESIGN OF WATER AND WASTE WATER TREATMENT

Course scheme				Evaluation scheme (Theory)					
lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper hour	MSE	IE	ESE	Total
3	1	-	4	3	3 Hr	10	10	80	100

UNIT	TOPICS	HOURS
I	Objective of water treatment, unit operation and unit processes, treatment flow, site selection for water treatment plant. Aeration: objective of aeration, types or aerators, design of cascade aerator, gas transfer, two film theory; spray aerator.	5
Π	Coagulation- Flocculation: Theory of coagulation objectives, types of rapid and slow mixing devices (hydraulic and mechanical), factors affecting coagulation and flocculation, nature and types of chemical coagulants used in water treatment, coagulant and flocculent aids. Sedimentation: Theory of sedimentation, factors affecting, types of settling, analysis of discrete and flocculent settling, design of sedimentation tank and clariflocculators.	10
III	Filtration: mechanism of filtration, types of filters, design of rapid sand filters, filter media specifications, preparation of filter sand from stock sand, problems in filtration.Disinfection: Method of disinfection, kinetics of disinfection, types of disinfectants, Chlorination, method of chlorination (breakpoint chlorination), factors affecting efficiency of chlorination.	8
IV	Treatment Methods: Waste water treatment flow sheet, preliminary, primary and secondary methods of treatment, design of screen. Girt chamber and primary settling tank.	12

V	Biological unit processes: principle of biological treatment						
	processes, design parameters of activated sludge	10					
	process and trickling filters.						
	Aerated lagoons, stabilization ponds, Sludge treatment, aerobic and						
	anaerobic digestion and sludge drying beds.						

Books:

- 1. CPHEEO Manual of water supply & treatment
- 2. CPHEEO Manual on Sewerage & sewage treatment.
- 3. Water supply Engineering Vol I & II by B.C. Punmia Laxmi Publication
- 4. Wastewater Engineering by Metcalf & Eddy Tata McGraw Hill
- 5. Water supply & Sewage by M.S. Macghee, -- Tata McGraw Hill

Elective IV- B.E. Civil Engineering, VIII Sem

Course Code: CE812

Course: Application of System Engineering

Course Scheme					Evaluation Scheme(Theory				
Lecture	Tutorial	Practical	Periods/Week	Credits	Duration of paper hour	MSE	IE	ESE	Total
03	01	03	04	03	03	10	10	80	100

Unit No.	Content	Hours
1	INTRODUCTION AND BASIC CONCEPT	06
	Introduction, System Components, Planning and Management	
	Concept of a System, Advantages and Limitations of a system	
	Approach, Modeling of a various Problems in Civil. Optimization,	
	Economics in Civil Engineering, Challenges in Water sector.	
	INTRODUCTION TO OPTIMIZATION.	
	Objective function, Maxima, minima saddle points, convex and	
	concave functions. Constrained and unconstrained optimization using	
	calculus Lagrange multipliers, Kuhn-Tucker Condition.	
II	LINEAER PROGRAMMING AND APPLICATIONS	10
	General form of LP, Standard and Canonical forms of LP, Elementary	
	transformations. Graphical method, Feasible and infeasible solutions.	
	Simplex method, Dual and Sensitivity Analysis. LP problem	
	formulation, Reservoir sizing and Reservoir operation using LP.	
III	DYNAMIC PROGRAMING AND APPLICATIONS	09
	Introduction, Multistage decision problem, Recursive Equations,	
	Principle of optimality, Discrete DP, curse of Dimensionality., Water	
	allocation problem., Capacity expansion problem., Reservoir	
	operation., Multipurpose reservoir operation.	
IV	MULTI-OBJECTIVE OPTIMIZATION	10
	Introduction, Non-inferior solutions, Trade of analysis, Pareto optimal	
	solutions.Multipurpose reservoir operations. Weighted and constraint	
	methods, Other methods., Review of probability theory., Uncertainty	
	and reliability analysis.	
	SIMULATION	
	Introduction, River basin Simulation, Reservoir operation simulation,	

	some simulation models	
V	River basin planning and management., Water Distribution systems,	10
	Groundwater systems, Water quality modeling., Floodplain	
	management, Urban storm management	
	ADVANCED TOPICS	
	Fuzzy optimization, Genetic algorithms, Multi Criteria decision	
	making, Decision support systems, Expert systems	

References:

- 1. Loucks D.P, Stedinger J.R and Haith D.A, 'Water Resources Systems Planning and Analysis', Prentice Hall, USA, 1981.
- 2. Mays L.W and Tung Y-K, 'Hydrosystems Engineering and Management', McGraw Hill, USA, 1992.
- 3. Vedula S. and Mujumdar P.P., 'Water Resources Systems: Modelling Techniques and Analysis', Tata-McGraw Hill, 2005.
- 4. Jain S.K. and Singh V.P., 'Water Resources Systems Planning and Management', Elsevier, The Netherlands, 2003.
- 5. Loucks D.P. and van Beek E., 'Water Resources Systems Planning and Management', UNESCO Publishing, The Netherlands, 2005.
- S.S. RAo "Engineering Optimization Theory and Practice " John Wiley & Sons, 20-Jul-2009

COURSE CODE: 814 COURSE: ADVANCED DESIGN OF STEEL STRUCTURES Course scheme Evaluation scheme (LABORATORY)

Course scheme				Evaluation scheme (LABORATORY)				
Lecture	Tutorial	Practical	Credits	TW POE Tota				
		3	2	25	25	50		

LIST OF EXPERIMENTS

1. Minimum two designs on above syllabus and drawing on A 1 Size drawing sheet.

Course Code: CE – 815

Course: WATER TRANSMISSION AND

DISTRIBUTION SYSTEM

Course scheme Evaluation scheme (LABORATORY)

Course scheme					Evaluation scheme (Practical)			
lecture	Tutorial	Practical	Periods/week	Credits	TW	POE	Total	
-	-	3	3	2	25	25	50	

Minimum 8 assignments based on following topics

- 1. Water distribution network analysis by Hardy cross method.
- 2. Water distribution network analysis by Newton Raphson method.
- 3. Water distribution network analysis by Linear theory method.
- 4. Water distribution network analysis by Gradient method.
- 5. Water distribution network analysis by Node flow analysis.
- 6. Design of water distribution network using critical path method.
- 7. Design of water distribution network using cost head loss ratio method.
- 8. Design of water distribution network using software TORA of Linear programming technique.
- 9. Design/ analysis of water distribution network with the application of software like Loop, Branch, EPANET, Water GEMS or Water CAD.
- 10. Conversion of Loop network into branch network using minimum spanning tree concept / Path length concept.
- 11. Pressure Dependant Demand (PDD) analysis of water distribution network.

ELECTIVE IV B.E. Civil Engineering-VIII Sem

Course Code: CE-816

Course: DESIGN OF WATER AND WASTE WATER

TREATMENT SYSTEM

Course scheme Evaluation scheme (LABORATORY)

Course scheme					Evaluation scheme (Practical)			
lecture	Tutorial	Practical	Periods/week	Credits	TW	POE	Total	
-	-	3	3	2	25	25	50	

Minimum five experiments

A)

1. Determination of sulphates

2. Determination of chlorides

3. Residual available chlorination and chlorine demand

4. Determination of BOD

5. Determination of COD

6. Jar test

7. Effective size and uniformity coefficient of filter sand

8. Bacteriological test (MPN Test)

B) Design of individual unit of water or waste water treatment

Course Cod	le: CE 817 Course	scheme Eval	Course- Application of System Engineering uation scheme (LABORATORY)				
Lecture	Tutorial	Practical	Credits	TW	POE	Total	
0	0	3	2	25	25	50	

TERM WORK

Minimum Five Assignment based on theory syllabus along with the five problems to be solved by using MATLAB

Practical Examination shall be based on the above Practical work.

Course Code: CE - 818

Course: Experimental stress analysis

Course scheme Evaluation scheme (LADONATORT)								
		Course sch	neme		Evaluation scheme (Practical)			
lecture	Tutorial	Practical	Periods/week	Credits	TW	POE	Total	
-	-	3	3	2	25	25	50	

Course scheme Evaluation scheme (LABORATORY)

Term Work: Minimum ten of the following experiments to be performed

1 Study of electrical resistance strain gauge

2 Study of commercial strain indicator

3 Calibration of electrical resistance strain gauge. Determination of gauge factor Sg

4 Determination of unknown weight. Transducer application of strain gauge

5 Calculation of gauge factor and strain for single and two arm bridges.

6 Calculation of gauge factor and strain for four arms lateral and linear sensitive bridges.

7 Measurement by using commercial strain indicator and transducers.

8 Study of isoclinics and isochromatics and use of white light

9 Calibration of photo elastic model material. Determination of material fringe value.

10 Determination of fringe order by Tardy's method.

11 Separation of stresses by oblique incidence method.

12 Study of brittle coating method.

Practical Examination shall consist of written test & viva-voce based on the syllabus & sessional work.

Course Cod	le: CE – 819	Course: PROJECT (PHASE –II)				
Lecture	Tutorial	Practical	Credits	TW	POE	Total
0	0	6 hrs	6	100	100	200

The project work started in the seventh semester will continue in this semester. The students will complete the project work in this semester and present it before the assessing committee. The term work assessment committee as constituted in the seventh semester will assess the various projects for the relative grading and group average. The guides will award the marks for the individual students depending on the group average. Each group will submit the copies of the completed project report signed by the guide to the department. The head of the department and college principal will certify the copies and return them to the students. One copy will be kept in the departmental library.