GONDWANA UNIVERSITY
GADCHIROLI

SYLLABUS
For
M. Sc.
BOTANY
SEMESTER III & IV

Under
Choice Based Credit System
(CBCS)
(With effect from: 2017-18)
Scheme of teaching and examination under semester pattern Choice Based Credit System (CBCS) for M.Sc. Program in Botany.

Semester III

<table>
<thead>
<tr>
<th>Core</th>
<th>Theory/ Practical</th>
<th>Teaching Scheme</th>
<th>Credit</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hrs/week</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td>Total</td>
</tr>
<tr>
<td>PSCBOTT09</td>
<td>Paper - IX</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>PSCBOTT10</td>
<td>Paper - X</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>PSDBOTT11</td>
<td>Paper - XI</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>PSSBOTT12</td>
<td>Paper - XII</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Pract-V</td>
<td>Practical - V</td>
<td>-</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Pract-VI</td>
<td>Practical - VI</td>
<td>-</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Seminar - III</td>
<td>Seminar - III</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>16</td>
<td>34</td>
</tr>
</tbody>
</table>

Semester IV

<table>
<thead>
<tr>
<th>Core</th>
<th>Theory/ Practical</th>
<th>Teaching Scheme</th>
<th>Credit</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hrs/week</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td>Total</td>
</tr>
<tr>
<td>PSCBOTT13</td>
<td>Paper - XIII</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>PSCBOTT14</td>
<td>Paper - XIV</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>PSDBOTT15</td>
<td>Paper - XV</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>PSSBOTT16</td>
<td>Paper - XVI</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Pract-VII</td>
<td>Practical - VII</td>
<td>-</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Pract-VIII</td>
<td>Practical - VIII</td>
<td>-</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Seminar - IV</td>
<td>Seminar - IV</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>16</td>
<td>34</td>
</tr>
</tbody>
</table>
Project Work/Dissertation Scheme / Guidelines for the Students, Supervisors and Examiners

Every student is required to carry out a project work in semester IV. The project can be of following types. A) Experimental Project Work; OR B) Field Based Project Work; OR C) Review writing based Project Work.

Experimental Project Work and Field Based Project Work:
Student can carry out Experimental / Field Based Project Work on a related research topic of the subject / course. It must be an original work and must indicate some degree of experimental work / Field work. On the basis of this work, student must submit the Project Report (typed and properly bound) in two copies at least one month prior to commencement of the final Practical / lab Examination of Semester IV. The project report shall comprise of Introduction, Material and Methods, Results, Discussion, Summary, Conclusion and, References along with the declaration by the candidate that the work is original and not submitted to any University or Organization for award of the degree and certificate by the supervisor and forwarded through Head / Course-coordinator / Director of the Department / Centre or the Principal of the College.

Review writing based Project Work.
Student can carry out review writing Based Project Work on a related topic of the subject / course. It must be a review of topic based on research publications. Student shall refer peer reviewed original research publications and based on findings, write a summary of the same. The pattern of review writing shall be based on reputed reviews published in a standard, peer reviewed journals. On the basis of this work, student must submit the Project Report (typed and properly bound) in two copies at least one month prior to commencement of the final Practical / lab Examination of Semester IV. The project report shall comprise of Abstract, Introduction, detailed review, Discussion, Summary, Conclusion and, References along with the declaration by the candidate that the work is original and not submitted to any University or Organization for award of the degree and certificate by the supervisor and forwarded through Head / Course-coordinator / Director of the Department / Centre or the Principal of the College.

*The supervisors for the Project Work shall be from the following.
A person shall be an approved faculty member in the relevant subject.
OR
Scientists of National Laboratories / Regional Research Laboratories/ Experts from R&D in Industry who are approved by competent authority in such facilities by the Union Government / the State Government / Gondwana University / Other Universities recognized by UGC.

The Project Work will carry total 100 marks and will be evaluated by both external and internal examiner in the respective Department / Center / Affiliated College.

The examiners will evaluate the Project Work/Dissertation taking into account the coverage of subject matter, arrangement and presentation, references, etc.

<table>
<thead>
<tr>
<th>For written Project work</th>
<th>40</th>
<th>Marks – Evaluated jointly by External & Internal examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral Presentation</td>
<td>20</td>
<td>Marks – Evaluated jointly by External & Internal examiner</td>
</tr>
<tr>
<td>For Viva-Voce</td>
<td>20</td>
<td>Marks – Evaluated by External examiner</td>
</tr>
<tr>
<td>Internal Assessment</td>
<td>20</td>
<td>Marks – Evaluated by Internal examiner</td>
</tr>
</tbody>
</table>
Seminar Guidelines for Students, Supervisors and Examiners
In each semester, the student will have to deliver a seminar on any topic relevant to the syllabus / subject encompassing the recent trends and development in that field / subject. The topic of the seminar will be decided at the beginning of each semester in consultation with the supervising teachers. The student has to deliver the seminar which will be followed by discussion. The seminar will be open to all the teachers of the department, invitees, and students.
The students should submit the seminar report typed and properly bound in two copies to the head of the department. The said shall be evaluated by the concerned supervisor / head of the department. The marks of the seminar shall be forwarded to the university within due period through head of the Department. The record of the seminar should be preserved till the declaration of the final result.

Internal Assessment:
1. The internal assessment marks shall be awarded by the concerned teacher.
2. The internal assessment marks shall be sent to the University after the Assessment in the prescribed format.
3. For the purpose of internal assessment the University Department / College shall conduct any three assignments described below. Best two scores of a student in these tests shall be considered to obtain the internal assessment score of that student.
4. If the student does not appear for the Practical Exam he shall be declared failed in Practical Examination irrespective of marks obtained in Internal Practical Assessment. However the Internal Practical Assessment marks will be carried forward for his next supplementary Practical Exam.
5. General guidelines for Internal Assessment are:
 a) The internal assessment marks assigned to each theory paper as mentioned in Appendix 1 shall be awarded on the basis of assignments like class test, attendance, home assignments, study tour, industrial visits, visit to educational institutions and research organizations, field work, group discussions or any other innovative practice / activity.
 b) There shall be three assignments (as described above) per course.
 c) There shall be no separate / extra allotment of work load to the teacher concerned. He/ She shall conduct the Internal assessment activity during the regular teaching days / periods as a part of regular teaching activity.
 d) The concerned teacher / department / college shall have to keep the record of all the above activities until six months after the declaration of the results of that semester.
 e) At the beginning of each semester, every teacher / department / college shall inform his / her students unambiguously the method he / she proposes to adopt and the scheme of marking for internal assessment. (Prescribed in syllabus of respective Subjects).
 f) Teacher shall announce the schedule of activity for internal assessment in advance in consultation with HOD / Principal.

Practical Examination
1. Each practical carries 100 marks. The scheme of marking shall be as per given in the syllabi of respective subjects.
2. Practical performance shall be jointly evaluated by the External and Internal Examiner. In case of discrepancy, the External Examiner’s decision shall be final.
3. Duration of practical examination will be as per given in the syllabi of respective subjects.
4. The Practical Record of every student shall carry a certificate as shown below, duly signed by the teacher-in-charge and the Head of the Department. If the student fails to submit his / her certified Practical Record duly signed by the Teacher-In-Charge and the Head of the Department, he / she shall not be allowed to appear for the Practical Examination and no Marks shall be allotted to the student.
5. The certificate template shall be as follows:

CERTIFICATE

Name of the college / institution ________________________________

Name of the Department: ________________________________

This is to certify that this Practical Record contains the bonafide record of the Practical work of Shri / Shrimati / Kumari ____________________________ of M. Sc. ____________________________

Semester ___________ during the academic year ___________. The candidate has satisfactorily completed the experiments prescribed by Gondwana University Gadchiroli for the subject ___________.

Dated ___________/ ___________/ ___________

Signature of the teacher who taught the examinee Head of the Department

1. ________________________________

2. ________________________________
Practical Schedule:
Semester III

PRACTICAL V

Course code: PSCBOTP05

Credit - 04

Time : 6 Hours

Full marks : 80

Q. 1 To perform the given Ecological exercise - [A] 15
Q. 2 Soil analysis/Ecological adaptation - [B] 10
Q. 3 One experiment from paper X - [C] 15
Q. 4 One experiment from paper X - [D] 10
Q. 5 Spotting: [E] (Paper IX), [F] (Paper IX), [G] (Paper X), [H] (Paper X) 20
Q. 6 Viva-voce 05
Q. 7 Practical Record 05

PRACTICAL VI

Course code: PSDBOTP06

Credit - 04

Time : 6 Hours

Full marks : 80

Q. 1 Experiment from Major Exercise 15
Q. 2 Experiment from Minor Exercise 10
Q. 3 Experiment from Major Exercise 15
Q. 4 Experiment from Minor Exercise 10
Q. 5 Spotting: E (Major Exercise), F (Minor Exercise), G (Major Exercise), H (Minor Exercise) 20
Q. 6 Viva-voce 05
UNIT - I:
Vegetation organization: Concepts of community and continuum, analysis of communities (analytical and synthetic characters); interspecific associations, concept of ecological niche.
Vegetation development: Temporal changes (cyclic and non-cyclic); mechanism of ecological succession (relay floristic and initial floristic composition; facilitation, tolerance and inhibition models); changes in ecosystem properties during succession, Autecology.

UNIT - II:
Ecosystem organization: Structure and functions; primary production (methods of measurement, global pattern, controlling factors); energy dynamics (trophic organization, energy flow pathways, ecological efficiencies); litter fall and decomposition (mechanism, substrate quality and climatic factors); global biogeochemical cycles of C, N, P, and S; mineral cycles (pathways, processes, budgets) in terrestrial and aquatic ecosystems.

UNIT - III:
Air, Water and Soil pollution: Kinds; sources; quality parameters; effects on plant and ecosystems. Climate change: Greenhouse gases (CO₂, CH₄, N₂O, CFCs; sources, trends and role); ozone layer and ozone hole; consequences of climate change (Global warming, sea level rise, UV radiation).

UNIT - IV:
Ecosystem stability: Concept (resistance and resilience); Ecological perturbations (natural and anthropogenic) and their impact on plants and ecosystems; ecology of plant invasion; environmental impact assessment; ecosystem restoration. Ecological management: Concepts; sustainable development; sustainability indicators.

Practicals:

1. A trip to the grassland/forest/water body to get acquainted with their plant species.
2. Distribution pattern of different plant species determined by Quadrat/Transat/Point centered Quadrat methods.
3. Qualitative parameters of distribution of plant species, Frequency, Density, Basal cover, dominance, Abundance and IVI.
4. Analysis of soils of two different areas i.e. Cropland and forest/grassland for certain nutrients, CO₃, NO₃, Base deficiency.
5. Analysis of water quality for physical properties like colour, BOD, COD, O₂, CO₂ contents etc.
Suggested Readings:
4. Anderson JM Ecology for environmental sciences: biosphere ecosystems and man
22. Reynolds CS 1984 The ecology of phytoplankton, Cambridge Univ Press
UNIT - I:
Ribosomes: Structure and function
Transcription & Translation: Transcription in prokaryotic and eukaryotic cells, plant promoters, transcription factors, types of RNA and their function, splicing, mRNA transport, rRNA biosynthesis; translation in prokaryotic and eukaryotic cells, structural levels of proteins, post-translational modification; structure and role of tRNA.

UNIT - II:
Gene structure and expression: Fine structure of gene, Cis-trans test; fine structure analysis in eukaryotes; introns and their significance, RNA splicing; regulation of gene expression in pro- and eukaryotes.
Protein sorting: Machinery involved, vesicles, coat proteins; protein targeting to plastids, mitochondria, peroxisomes, nucleus, vacuoles; modification during transport.

UNIT - III:
Genome organization in prokaryotes and eukaryotic organelles: Phage genome, genetic recombination in phage and mapping phage genes; mapping of bacterial genes through transformation, conjugation and transduction; genetics of mitochondria and chloroplast.
Genetic recombination and genetic mapping: Recombination, independent assortment and crossing over; molecular mechanism of recombination, role of RecA and RecBCD enzymes; site-specific recombination; chromosome mapping, linkage group, genetic markers, construction of molecular maps, correlation of genetic and physical maps; Somatic cell genetics - an alternative approach to gene mapping.

UNIT - IV:
Cell cycle and apoptosis: Control mechanisms, role of cyclins and cyclin dependent kinases; retinoblastoma and E2F proteins; cytokinesis and cell plate formation; programmed cell death in plants; regulation in plant growth and development.
Signal transduction: Overview, receptors and G-proteins, phospholipid signaling, role of cyclic nucleotides, calcium-calmodulin cascades, diversity in protein kinases and phosphatases.
Techniques in cell biology: Electrophoresis, immunotechniques, FISH, GISH, confocal microscopy

Practicals:
1. Isolation of nuclei and identification of histones by SDS-PAGE.
2. Isolation of chloroplast and demonstration of two subunits of RUBISCO by SDS PAGE
3. Restriction digestion of plant DNA, its separation by agarose gel electrophoresis, visualization by ethidium bromide staining.
4. To study in vitro transcription.
5. To study in vitro translation.
6. To study conjugation in bacterial cells.
7. To detect the presence of specific antigen by ELISA
8. Isolation of RNA and quantification by spectrophotometric method.
References: Online journals available on UGC V-SAT programme

Suggested readings:

M. Sc. Botany Syllabus

Semester III

Course code- PSDBOTT11 (DSE-I)
PAPER –XI: Reproductive Biology of Angiosperm-I

UNIT - I:
General: Need for reproductive system as experimental material, Interdisciplinary approaches: genetic and molecular perspective,
Anther: Structure, anther wall; endothecium, middle layer, tapetum-Structure, types-structure-function relationship, role of tapetum, microsporogenesis- sporogenous cells cytoplasmic reorganization during sporogenesis (Ultrastructural changes), molecular biology of meiosis, DNA and RNA synthesis, Protein synthesis, meiosis specific genes. Pollen tetrad development, pollen wall proteins, adaptive significance of pollen wall.

UNIT - II:
Male gametophyte development: formation of vegetative and generative cells, differential behavior of sperms, gene expression during pollen development.
Pollen: Physiological and biochemical aspects, pollen storage, viability causes for loss of viability. pollen abortion and male sterility, structural, developmental and functional aspects of male sterility environmental factors, role of mitochondrial genome in male sterility, gametocides.

UNIT - III:
Pistill: Carpel determination, ovule and its structural details.
Megasporogenesis: Meiosis, functional megasporores, organization of female gametophyte structure of the embryo sac, egg, synergid-structure, role central cell, antipodal cell, haustoria, cytoskeleton of the embryo sac, enzymatic isolation of embryo sac, types of embryo sac, nutrition of embryo sac.

UNIT - IV:
Pollination-pollination mechanism, biotic and abiotic pollination, floral attractants and rewards,
Pollen-pistil interaction: The stigma-Types and structure, stigmatic exudates, style-transmitting tissue, canal cell, post pollination events (stigma receptivity, pollen adhesion, pollen hydration, pollen germination and pollen tube growth, biochemistry of pollen germination, RNA and protein metabolism during pollen tube, calcium gradient in the pollen tube (Chemotropism) pollen allelopathy.
Incompatibility: General concept, self incompatibility (Intraspecific type) heteromorphic, homomorphic types, mechanism of self compatibility, importance of self compatibility, methods of overcoming self incompatibility, Parasexual hybridization.
Practicals:

Major exercises:

1. Short term exercises on pollen production, viability and their percentage of germination. Rate of growth of germ tube to be studied in a given period.
2. Cytology of pollen inhibition in self and interspecific incompatibility, application of some techniques to overcome incompatibility.
3. Techniques, Familiarity with phase contrast, polarizing, fluorescence and electron microscopy, whole mounts, dissection and macerations, permanent double stained microtome sections, photo microscopy.
4. Interpretation of electron micrographs (SEM, TEM) of pollen.
6. Preparation of permanent slides using micro-technique: Section cutting and processing for staining.
7. Study of pollen morphology (polarity, symmetry, shape, size, aperture) using acetolysis method.

Minor exercises:

8. Study from the permanent preparations.
 b. Structure and types of ovule.
 c. Megasporogenesis,
 d. Embryo sac and its types.
 e. Development of endosperm, types.
 f. Structure and development of embryo- types
 g. Pericarp and seed coat structure from sections and macerations.
 h. Sketching of ovular structure, embryo sac, anther wall, embryo with the help of camera lucida.
9. Preparation of dissected whole mounts of endothecium, tapetum, endosperm and embryo, squash preparations of tapetum, microspore mother cells, dyads, tetrads pollinia and massulae.
10. Study of mitosis and meiosis and identification of various stages.
11. Experiments on intra- ovarian pollination.
Suggested Readings:
M. Sc. Botany Syllabus

Semester III

Course code- PSDBOTT11 (DSE-I)

PAPER –XI: Molecular Biology and Plant Biotechnology-I

UNIT- I:
DNA replication: DNA replication in prokaryotic organism – Initiation, elongation, and termination, DNA replication in eukaryotes – origin, replication form, replication proteins, Comparative account of DNA replication in prokaryotes and eukaryotes, DNA replication proteins
DNA damage and repair: Types of DNA damage, factors for DNA damage, Repair system: Single base change, direct repair, mismatch repair, SOS response.

UNIT- II:
Isolation of gene and nucleotide sequence: DNA manipulation enzymes; General methods of gene isolation.
Molecular probing: Recombinant DNA libraries (gDNA and cDNA, oligonucleotide probes); nucleic acid hybridization (southern, northern, dot-blot and slot-blot); antibodies as probe for proteins (immunoblotting or western blotting, immunoprecipitation, southwestern screening).

UNIT- III:
Splicing of foreign DNA into cloning vector: Vectors for prokaryotes; ligation.
Introduction of foreign DNA into host cell: Transformation; transfection; transgenesis
Isolation of genes or protein products from clones: Expression vectors- Characteristics; vectors producing fusion proteins
Polymerase chain reaction: Types of PCR’s and their applications in molecular biology

UNIT- IV:
Sequence alignment and phylogenetic trees: Dot plots, sequence similarity, pairwise and multiple alignment, significance of alignment, phylogeny and phylogenetic trees and evolution.
Genomics: Definition; genome analysis (genetic polymorphisms, genetic mutations); microarray technology and applications (gene expression and diseases).
Proteomics: Protein stability and folding; application of hydrophobicity; DALI (Distance-matrix alignment); Protein structure- evolution, classification, prediction and modeling, prediction of function. DNA microarrays, mass spectrometry, network and graphs, protein complexes and aggregates, protein interaction networks, regulatory networks.
Practicals:

Major Exercises -
1. Detection of DNA damage by mutagens.
2. Bacterial transformation and selection of transformed cells.
3. To detect molecular polymorphism of different species.
4. To demonstrate the presence of particular polypeptide by Western blotting.
5. To design PCR primers for isolation of given gene and to clone it in the given vector.
6. Amplification and sequencing of nr DNA by PCR

Minor Exercises-
7. To find the sequences of a given protein in SWISS-Prot, Uni-Prot.
8. To work out the sequence from given autoradiogram and to identify it from Gene Bank by BLAST method.
9. To generate Pairwise and multiple sequence alignment of a given organisms.
10. To generate phylogenetic tree using given sequences.
11. To predict a protein from given sequence by using online tools from NCBI.

Suggested Readings:
1. Alberts, Bruce; Johnson Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter, C. 2002 Molecular Biology of the Cell, Garland Science, New York and London.
Basel, Switzerland.

Suggested Readings(for laboratory exercises)

4. Medicine (US), NCBI; 2002-2005

References: Online journals available on UGC V-SAT programme.
M. Sc. Botany Syllabus

Semester III

Course code- PSDBOTT11 (DSE-I)
PAPER –XI: Paleobotany-I

UNIT – I:
Introduction to the science of Petrology- The earth zones, chemical composition of earth crust. The classification of rocks i.e.Endogenetic and Exogenetic (igneous, metamorphic and sedimentary) and their brief account. Glaciations, volcanic eruption and earthquake.

UNIT–II

UNIT–III:

UNIT –IV:

Suggested Laboratory and Field Exercises

Major Exercises:
1. Different techniques to study fossils. (Ground sectioning, peel technique) Study different types of fossils.
2. Study of plant fossils as per syllabus based on specimens and slides.
3. Arborescent Lycopods of Carboniferous-study of Lepidodendrales members.
4. Study of Sphenophyllales, Calamitales members.

Minor Exercises:
9. Geological column and time scale.
10. Study of different rocks.
11. Preparation of practical record.

Suggested Readings

M. S c. Botany Syllabus

Semester III

Course code- PSSBOTT12 (SEC-I)
PAPER – XII: Biofertilizers-I

UNIT I
Historical account of Biofertilizer, types of Biofertilizer, Microbial inoculent from bacteria, algae, fungi and other groups, their isolation, identification. Mass inoculation of microbial inoculants, effect of inoculent on crop yield. Marketing and work done on biofertilizer in India

UNIT II
Bacterial inoculants: - Rhizobial culture packing and quality control, method of inoculation, effect of Rhizobial inoculent on crop yield. Azatobacter inoculants on, Azospirillum inoculants and mass cultivation; Phosphate solubilizing microorganism, Phosphate biofertilizer

UNIT III

Unit IV
Fungal inoculants: - Mycorrhiaza fungi as bio fertilizers; Methods of Inoculation, Mechanism of symbiosis, Growth and yield – Colonization of VAM-Isolation and proudcution of VAM. Benifites from mycorr hizas to plants as biofertilizer.

Practicals:
Based on theory syllabus.

Suggested reading:-
3. The complete technology book on Vermiculture and Vermicompost NIIR- New Delhi.
Unit-I:
Garden Planning- Formal and informal gardens, originality in planning, view from the house, variety and surprise, overcrowding (density of planting), colour scheme, spacing, fragrance, spacing for vegetables and fruits, water supply and garden accessories, choice of plants, arches and pergolas, wall aspect, hill features, situation, landscaping and garden features.

Unit-II:

Unit-III:
Garden Style- Informal garden, Romantic Garden, Wildlife garden, Container garden, Roof garden, Planned garden, Small garden, Japanese garden, Exotic garden, Kitchen garden, Vegetable garden, Herb garden, Fruit garden.

Unit-IV:
Lawns and hedges, Flowers, herbaceous border and annuals, Roses, Chrysanthemums and Carnations, Bulbous plants, Climbers, Trees and shrubs, Orchids, Ferns and Palms, Cacti and other succulents.

Practicals:
Based on theory syllabus.

Suggested Readings:
M. Sc. Botany Syllabus

Semester III

Course code- PSSBOTT12 (SEC-I)
PAPER –XII: PLANT DIVERSITY AND HUMAN WELFARE-I

Unit-I:
Plant diversity and its scope- Genetic diversity, Species diversity, Plant diversity at the ecosystem level, Agrobiodiversity and cultivated plant taxa, wild taxa.

Unit-II:
Values and uses of Biodiversity: Ethical and aesthetic values, Precautionary principle, Methodologies for valuation, Uses of plants, Uses of microbes.

Unit-III:
Loss of Biodiversity: Loss of genetic diversity, Loss of species diversity, Loss of ecosystem diversity, Loss of agrobiodiversity, Projected scenario for biodiversity loss

Unit-IV:
Management of Plant Biodiversity: Organizations associated with biodiversity management- Methodology for execution-IUCN, UNEP, UNESCO, WWF, NBPGR; Biodiversity legislation and conservations, Biodiversity information management and communication.

Practicals:
Based on theory syllabus.

Suggested Readings
Unit-I:
Introduction: History of gardening; Importance and scope of floriculture and landscape gardening.

Unit-II:
Nursery Management and Routine Garden Operations: Sexual and vegetative methods of propagation; Soil sterilization; Seed sowing; Pricking; Planting and transplanting; Shading; Stopping or pinching; Defoliation; Wintering; Mulching; Topiary; Role of plant growth regulators.

Unit-III:
Ornamental Plants: Flowering annuals; Herbaceous perennials; Divine vines; Shade and ornamental trees; Ornamental bulbous and foliage plants; Cacti and succulents; Palms and Cycads; Ferns and Selaginellas; Cultivation of plants in pots; Indoor gardening; Bonsai.

Unit-IV:
Diseases and Pests of Ornamental Plants.

Practicals:
Based on theory syllabus.

Suggested Readings
M. Sc. Botany Syllabus

Semester III

Course code- PSSBOTT12 (SEC-I)
PAPER–XII: BASIC BOTANY-I

UNIT I
Diversity of cryptogams:- classification, general description, economic importance of cryptogams with examples- viruses, micoplasma, bacteria, fungi, lichens, bryophytes and plant pathology.

UNIT II
Diversity of phenorogamas:- classification, general description, economic importance with examples of pteridophytes, gymnosperms, monocotyledonous and dicotyledonous.

UNIT III
Morphology of angiosperms:- discription of monocotyledonous and dicotyledonous plants in technical terminology for the identification of plants in your region, habit and habitat, types of roots, leaves inflorescence, flowers, fruits, seeds identification of some important local plants from families of angiosperms.

UNIT IV

Practicals:
Based on theory syllabus.

Suggested Readings:-
1) S.Sundara Rajan College Botany Vol I to IV Himalaya publishing house.
3) Gangulee And Kar College botany Vol.I and II.
5) A.C.Dutta Botany for degree students.
6) S.N.Pande And P.S.Trivedi Text book of botany Vol I and II. Vani educationa
Semester IV
PRACTICAL VII
Course code: PSCDBOTP07
Credit - 04
Time: 6 Hours
Full marks: 80

Q. 1 One Major exercise from paper XIII – [A] 10
Q. 2 One Minor exercise from paper XIII- [B] 05
Q. 3 One Major exercise from paper XIV – [C] 10
Q. 4 One Minor exercise from paper XIV - [D] 05
Q. 3 One Major exercise from paper XV [E] 15
Q. 4 One Minor exercise from paper XV [F] 10
Q. 5 Spotting: [G] (Plant Biotechnology), [H] (Angiosperms) [I] (Core Elective-I) 15
Q. 7 Viva-voce 05
Q. 8 Practical Record and tour report 05

Semester IV
PRACTICAL VIII
Course code: PSPBOTP08
Credit - 04
PROJECT
Full marks: 80
UNIT- I:
Recombinant DNA technology: Gene cloning and principles and technique; vectors- types and their properties; construction of DNA libraries; splicing of insert into the vector; screening of DNA libraries and introduction of the recombinant DNA into the host cells.

Genetic engineering of plants: Aims, strategies for development of transgenics (with suitable examples); Agrobacterium- the natural genetic engineer; T-DNA and transposon mediated gene tagging.

UNIT- II:
Microbial genetic manipulation: Bacterial transformation, selection of recombinants and transformants, genetic improvement of industrial microbes and nitrogen fixers, fermentation technology.

Genomics and proteomics: Molecular markers for introgression of useful traits; high throughput sequencing; functional genomics; Protein profiling and its significance.

DNA synthesis; DNA sequencing; polymerase chain reaction; DNA fingerprinting

UNIT- III:
Plant tissue culture: Basic concepts; Principles and scope; tissue culture media; callus induction and cell suspension; aspects of morphogenesis; haploid and triploid production; production of somatic embryos; applications of plant tissue culture; protoplast isolation and culture; production of cybrids

Transgenic production: Methods to introduce gene in plants; selection of transformed plants/explants; salient achievements in crop biotechnolgy.

UNIT- IV:
Bioinformatics: Introduction, History, Definition and applications of bioinformatics.

Database: Types and classification of databases – Primary Databases (Nucleic acid sequence, protein sequence, protein structure), Secondary databases (Genomic, cDNA, Organellar, gene expression), special databases (Human, *Escherichia coli*, *Saccharomyces cerevesiae* and *Arabidopsis thaliana*), Literature database (PubMed, OMIM), Information Retrieval system (Entrez). Other databases: GeneBank, KEGG, Taxonomy databases

Data analysis, prediction and submission tools and their uses: ORF finder, Blasts, FASTA, RASMOL, Prediction of pro- and eukaryotic genes and promoters (Genscan); protein structure (SWISS-Prot, pfam, PDB, PIR); sequin, webin, AutoDep tools.
Practicals:

Major Exercise:
1. Growth characteristics of *E. coli* using plating and turbidimetric methods.
2. Isolation of plasmid from *E. coli* and its quantification.
3. Restriction digestion of the plasmid and estimation of the size of various DNA fragments.
4. Cloning of a DNA fragment in a plasmid vector, transformation of the given bacterial population and selection of recombinants.
5. Co-cultivation of the plant material (e.g. leaf discs) with *Agrobacterium* and study GUS activity histochemically.
6. To isolate protoplast and determine its viability.

Minor Exercise:
7. Preparation of media for plant tissue culture.
8. To surface sterilize the given seeds/explant for tissue cultural manipulation.
9. To fuse the protoplast for production somatic hybrid.
10. Demonstration of DNA sequencing by Sanger's dideoxy method.
11. To search literature of different organisms and genes from NCBI.
12. Use of various tools to retrieve information available from NCBI.
13. To retrieve gene and protein sequences of various organisms from NCBI.
14. To locate gene(s) on chromosomes for a given disease/disorder.

Suggested Readings (for laboratory exercises)

References: Online journals available on UGC V-SAT programme.

Suggested Readings:
17. Watson, J. , Tooze and Kurtz Recombinant DNA: A short course
M. Sc. Botany Syllabus

Semester IV

Course code- PSCBOTT14
PAPER –XIV: Angiosperms - II

UNIT- I:
General account, distinguished characters, floral variation and evolution, affinities of :- Magnolidae, Hamamelidae, Dilleniidae, Rosidae, Asteridae, circumscription as per Cronquist,1968

UNIT- II:
General account, distinguished characters, floral variation and evolution, affinities of :- Alismatidae, commelinidae, Aracidae, Lilidae; Interesting features and systematic position of Cucurbitaceae, Cactaceae, Asteraceae, Amentiferae, Lemnaceae, Palmae, Orchidaceae.

UNIT- III:
Probable ancestors of angiosperms, primitive living angiosperms, speciation and extinction, IUCN categories of threat, distribution and global pattern of biodiversity.

UNIT- IV:
Biological diversity concept and levels, role of biodiversity in ecosystem functions and stability, Endemism, hotspots and hottest hotspots, invasions and introductions, local plant diversities and its socioeconomic importance.

Practicals:

Major Exercises:
1. Description of a specimen from representative, locally available families.
2. Description of a species based on various specimens to study intra specific variation: collective exercise.
3. Field trips within and around the campus; compilation of field notes and preparation herbarium sheets of such plants, wild or cultivated as are abundant.
4. Demonstration of the utility of secondary metabolites in the taxonomy of some appropriate genera.

Minor Exercises:
5. Description of various species of a genus, location of key characters and preparation keys at generic level.
6. Location of key characters and use of keys at family level.
7. Training in using floras herbaria for identification of specimens described in the class.
8. Comparison of different species of a genus and different genera of a family to calculate similarity coefficients and preparation of dendrograms.
Suggested Readings:

UNIT- I:
Fertilization: Cellular nature of sperm, the sperm cytoskeleton, the male germ unit, isolation and characterization of sperm, growth of the pollen tube through the style, passage of sperm into the embryo sac, fusion of nuclei, double fertilization, triple fusion, unusual features. In-vitro approaches to the study of fertilization-Intra-ovarian pollination, test tube fertilization, in-vitro fertilization, placentation pollination, Gynogenesis.

Endosperm: Types of endosperms, ruminate endosperm, cytological status. endosperm haustoria, chemical composition of endosperm, food reserve in endosperm, role of endosperm in embryo development, endosperm mutants.

UNIT- II:
Embryogenesis: Zygote and its ultra-structure, milieu of the developing embryo, symmetry and polarity, rest period in zygote embryonic formulae, embryonomic law. **Suspensor**-Ultra structure of suspensor cells, cytology of suspensor cell, physiology and biochemistry of suspensor; Nutrition of embryo- nutrient supply of the zygote, embryo-endosperm relation.

Polyembryony: Definition, causes, classification, induction of polyembryony, practical importance of polyembryony.

UNIT- III:
Apomixis: Definition, causes, classification, - Diplospory, Apospory, pseudogamy, autogamous development of endosperm, causes of apomixes, significance.

Parthenocarpy: Definition, causes, practical importance

Mellitopalynology: Pollen analysis of honey, Role of apiary in crop production.

Biotechnology: Concept and scope of biotechnology; Cell structure, cellular totipotency

 a) **Anther and pollen culture,**
 b) **Ovule and nucellus culture**
 c) **Endosperm culture and its practical applications**
 d) **Embryo culture:** Techniques, nutritional aspects of embryo culture morphological and physiological considerations, culture of mature embryo and proembryo.
 e) **Somatic embryogenesis:** Historical background, embryogenesis from callus, direct embryogenesis- recurrent embryogenesis; cytology of somatic embryogenesis, nutritional factors, hormonal factors.

UNIT- IV:

 a) **Protoplast culture and somatic hybridization**- isolation of protoplast, culture methods, fission of protoplast, selection of fission products, consequences of fission, production of Cybrids and hybrids.
 b) **Biotransformation and production of useful compounds** through cell culture, factor affecting yield, biotransformation, bioreactors, perspective.
Practicals:

Major Exercises:
1) Organogenesis using appropriate explants.
2) Responses of calli to stress condition viz. temp. (low, high), moisture, salinity.
3) Induction of androgenesis through anther culture.
4) Isolation of protoplasts, fusion and its culture.
5) Induction of somatic embryogenesis
6) Physiology of embryo development, using electrophoretic and histochemical methods embryo culture.

Minor Exercises:
7) Viability of seed through germination, biochemical and excised embryo methods.
8) Preparation of plant tissue culture medium (MS).
9) Demonstration of sterilization methods employed in Plant Tissue Culture techniques.
10) Induction of secondary metabolite synthesis in suspension culture.
11) Endosperm culture.
12) Ovule and Nucellus culture.
13) Viability test for isolated protoplasts.

Suggested Readings:

12. Chitralekha P. and N.N. Bhandari 1991, Post fertilization development of antipodal cells in
Ranunculus sceleratus. Phytomorphology 41, 200-212.

M. Sc. Botany Syllabus
Semester IV
Course code- PSDBOTT15 (DSE-II)
PAPER – XV: Molecular Biology and Plant Biotechnology-II

UNIT- I:
Transgenics: Cloning vectors for higher plants; Methods for gene transfer, *Agrobacterium tumefaciens* mediated- Basis of tumor formation, features of Ti and Ri plasmids, mechanisms of DNA transfer, role of virulence genes, use of Ti and Ri genetic markers, use of reporter genes and introns; Direct DNA transfer; particle bombardment; electroporation; microinjection; macroinjection; liposomes; electrophoretic; pollen tube method; pollen transformation; PEG method; transformation of monocots; transgene stability and gene silencing; chloroplast transformation.

UNIT- II:
Applications of transformation: Herbicide resistance; insect resistance; Bt genes, disease resistance; Nutritional quality; biopesticides and biofertilizers; hazards and safety regulations for transgenic plants.
Metabolic engineering through transgenic plants: Production of secondary metabolites; industrial enzymes; biodegradable plastics (PHB and any other); edible vaccines; antibody production and other important drugs.

UNIT- III:
Plant tissue culture: History, Culture types: Callus culture, organ culture, suspension culture for production of secondary metabolites, protoplast culture, fusion and somatic hybrids, Somatic embryogenesis, anther and pollen culture, haploid plants, somaclonal variations, organogenesis (direct and indirect).
Gene expression: Gene expression in Mitochondria, chloroplast, yeast
Regulation of gene expression: Regulation of gene expression in translation and post-translation level

UNIT- IV:
Nitrogen fixing genes: Organization, function and regulation of nitrogen fixing genes in *Klebsiella*, *hup* genes.
DNA fingerprinting and marker assisted breeding: RFLP maps; linkage analysis; RAPD markers; STS; SSR (microsatellites); ISSR; SCAR (sequence characterized amplified regions); SSCP (single strand conformational polymorphism); AFLP; QTL: map based cloning; molecular marker assisted selection
Cleaner Biotechnology: Pollution control through genetically modified organisms.
Practicals:

Major Exercises:
1. Agrobacterium *tumefaciens* mediating gene transfer in a suitable plant.
2. Induction of secondary metabolite synthesis in suspension culture.
3. Use of RAPD/RFLP/SSCP etc. markers to detect molecular polymorphism of different species.
4. Isolation and protein profiling in different plant species by SDS-PAGE.
5. Raising of suspension culture and plotting of growth curve.
7. Study of expression of inducible genes at biochemical level.

Minor Exercises:
8. Elisa testing of Bt gene in cotton.
11. DNA ligation and analysis of ligated DNA on agarose gel (cloning and analysis using GUS gene).
12. Organogenesis and somatic embryogenesis using appropriate explants and preparation of artificial seeds.

Suggested Readings (for laboratory exercises)
Suggested Readings:

1. Alberts, Bruce; Johnson Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter, C. 2002 Molecular Biology of the Cell, Garland Science, New York and London.

References: Online journals available on UGC V-SAT programme.
M. Sc. Botany Syllabus
Semester IV
Course code- PSDBOTT15 (DSE-II)
PAPER – XV: Paleobotany-II

UNIT- I:

UNIT- II:
Gymnosper- Caytoniales, Glossopteridales, Penntoxylales. fossil Cordaitales, Voltziales and phylogenentic consideration of all the orders.

UNIT- III:

UNIT- IV:
Paleopalynology-Important features of spores and pollen morphology, their role in stratigraphy and in exploration of coal and oil. Palaeopalynological studies, microfossils and its application. Paleoecology and paleogeography.
Indian Gonwana- Its stratigraphy and classification (Two fold and three fold). Index fossil

Suggested Laboratory and Field Exercises
Major Exercises:
2. Gymnosperm- Caytoniales, Glossopteridales, Penntoxylales. fossil Cordaitales.
4. Important features of spores and pollen morphology and technique to study them (Maceration)

Minor Exercises:
5. Study different types of fossils.
6. Study of plant fossils as per syllabus based on specimens and slides.
7. Study of wood anatomy of fossils.
8. Exploration and excursion to different fossiliferous localities.

Suggested Readings

UNIT I
Application and evaluation techniques of crop response to biofertilizers, simplified Anaerobic digester for biofertilizers; modified Anaerobic fermenter bioferitilizer, Operation condition for anaerobic digestion of biofertilizer.

UNIT II
Soil fertility and Fertilizer:- Soil microbiology and biofertilizer; Biogas from liquid biodfertiliser derived from ecoiogically hazardus water hycianth; Muncipal sewage, agricultural and industrial waste. Recycling of biodegradable waste.

UNIT III
Vermiculture and Vermitechnology:-Introduction; Advantages of vermicomposting, earthworm, ecological typs of earthworm, Vermicomposting and their application in organic culture- compost making, Methods and field application

UNIT IV
Green manuaring and Organic fertilizer:- Organic farming and organic manuares, Methanogenesis- pest and disease management system in agriculture.

Practicals:
Based on theory syllabus.

Suggested reading:-
Unit-I:
Plant Protection- Difference between a pest and a disease, preventive measures, control measures, cultural control, mechanical control, chemical control, common pests, bird and animal pests, rodent pests, insect pests and diseases.

Unit –II:
Plant propagation- Sexual and vegetative methods of propagation, short and long term storage of propagules (seeds, fruits, bulbs, rhizomes etc).

Unit-III:

Unit-IV:
Poly-house, Pots and potculture- Design and construction of Poly-house, maintenance and applications of poly-house. Popularity of pot culture, pot arrangements, selection of pots, filling up of pots, watering, repotting, boxes and baskets of potting.

Practicals:
Based on theory syllabus.

Suggested Readings:
Unit-I:
Conservation of Biodiversity: Conservation of genetic diversity, species diversity and ecosystem diversity, *In situ* and *ex situ* conservation.

Unit-II:
Social approaches to conservation, Biodiversity awareness programmes, Sustainable development.

Unit-III:
Role of plants in relation to Human Welfare:
Importance of forestry their utilization and commercial aspects
Avenue trees, Ornamental plants of India.

Unit-IV:
Role of plants in relation to Human Welfare. Alcoholic beverages through ages. Fruits and nuts:
Important fruit crops their commercial importance. Wood and its uses.

Practicals:
Based on theory syllabus.

Suggested Readings
M. Sc. Botany Syllabus
Semester IV
Course code- PSSBOTT16 (SEC-II)
PAPER –XVI: FLORICULTURE-II

Unit-I:
Principles of Garden Designs: English, Italian, French, Persian, Mughal and Japanese gardens; Features of a garden (Garden wall, Fencing, Steps, Hedge, Edging, Lawn, Flower beds, Shrubbery, Borders, Water garden. Some Famous gardens of India.

Unit-II:
Landscaping Places of Public Importance: Landscaping highways and Educational institutions.

Unit-III:
Commercial Floriculture: Factors affecting flower production; Production and packaging of cut flowers; Flower arrangements; Methods to prolong vase life;

Unit-IV:
Cultivation of Important cut flowers such as Carnation, Aster, Chrysanthemum, Dahlia, Gerbera, Gladiolous, Marigold, Rose, Lilium, Orchids.

Practicals:
Based on theory syllabus.

Suggested Readings
M. Sc. Botany Syllabus

Semester IV
Course code- PSSBOTT16 (SEC-II)
PAPER – XVI: BASIC BOTANY-II

UNIT I
Plant physiology:-
A) Water relation – Diffusion, Osmosis and Inhibition.
B) Absorption of water and minerals by root.
C) The loss of water from plants.
D) The movement of water in plants.
E) Metabolism of nitrogen, Photosynthesis, Respiration.
F) Synthesis of protein, fat and there trans location.
G) Plant growth, movement and reproduction.

UNIT II
Ecology and evolution:- Ecological groups of plants, ecological factors, the units of vegetation (communities), plant succession, ecological types of adaptation of plants, environmental pollution. Evolution of plant kingdom. The ideas of development of organic evolution (Darwinism and Lamarckism).

UNIT III
Economic botany:- General description of economically important plants, yielding food, fodder and forage, wood, oils, gums and resin, oil, drugs and narcotics, beverages, Spices and condiments.(any three examples from each type)

UNIT IV
Paleo botany:- Geological time scales, changes in organic life through ages, process of fossilization, types of fossils preservations, economic importance of fossils.

Practicals:
Based on theory syllabus.

Suggested Readings:-
1. S.Sundara Rajan College Botany Vol I to IV Himalaya publishing house.
3. Gangulee And Kar College botany Vol.I and II.
5. A.C.Dutta Botany for degree students.