Gondwana University Gadchiroli

Faculty of Science

Syllabus B. Sc. III

BIOCHEMISTRY

SEMESTER VI

(with effect from academic session 2014-15)

B.Sc. Part III

Semester V and VI

BIOCHEMISTRY

(with effect from academic session 2014-15)

- 1) There shall be two semesters in B.Sc. Part III Biochemistry.
- 2) Each semester comprise of two theory papers, internal assessment and practical.
- 3) Each theory paper divided into four units.
- 4) The syllabus is based on six theory periods and six practical periods per batch per week.
- 5) Students are expected to perform all the practicals mentioned in the syllabus. However a minimum
 - of seven practicals in each semester is mandatory.
- 6) Each theory paper examination shall be of three hours duration, comprise 5 questions and carry 50 marks. The practical examination shall be of 6 hours duration and carry 30 marks.
- 7) At the beginning of each semester, every teacher / department / college shall inform his / her students unambiguously the method teacher / department / college propose to adopt a scheme of marking for internal assessment.
- 8) The internal assessment marks assigned to each theory paper shall be awarded on the basis of attendance / home assignment / class test / Project assignment / seminar /study tour/ any other innovative practice / activity.
- 9) The B.Sc. students of Biochemistry shall pay at least one visit to any Biochemical/Research Institute as a study tour during three year (six semesters) degree course.

Sr No	Semester	Paper	Title of Paper	Total	Max.Marks		Total
		No.		periods/	Th	Int.	Marks
				Week			
		I	METABOLISM I	03	50	10	60
1	V	II	MOLECULAR BIOLOGY PRACTICAL	03	50	10	60
			FRACTICAL	6	30		30

		I	METABOLISM II	03	50	10	60
2	VI	II	MOLECULAR BIOLOGY & rDNA TECHNOLOGY	03	50	10	60
			PRACTICAL	6	30		30

The Syllabus is based on six (3x2) theory periods and six practical periods per batch per week.

Marks Distribution:

Theory Exam : 50 Marks (for each paper)
 Internal Assessment : 10 Marks (for each paper)

3. Practical : 30 Marks

Distribution of Marks in practical Examination:

1. Experimental work - 20 marks

2. Practical record - 05 marks

3. Viva - 05 marks

Study tour:

The B.Sc. students of Biochemistry shall pay at least one visit to any Biochemical/Research Institute as a study tour during three year (six semester) degree course.

* * * * * * *

B. Sc. Part III

Semester VI

PAPER – I

METABOLISM II

UNIT - I:

Lipid metabolism: -

- a) Hydrolysis of triacylglycerols, transport of fatty acids into mitochondria (Carnitine), Detailed account of -oxidation of fatty acids (-oxidation in mitochondria and peroxisomes),
 Oxidation of unsaturated fatty acids & odd carbon fatty acids. and Oxidation-Brief idea.
 ATP yield from fatty acid oxidation. Regulation.
- b) Detailed account of HMP Shunt & its significance in general, its connection to lipid metabolism.

UNIT - II:

Lipid metabolism: -

- a) Ketogenesis, Ketosis & ketoacidosis in physiology & pathology.
- b) Biosynthesis of fatty acids, Fatty acid synthase complex, Regulation, Microsomal & Mitochondrial system of chain elongation & synthesis of unsaturated fatty acids.
- c) Biosynthesis of triglycerides & phospholipids (Phosphatidyl-ethanolamine, choline, inositol), sphingolipids.

UNIT - III:

Protein metabolism: -

- a) Transamination.
- b) Oxidative & Non-oxidative deamination.
- c) Transport of ammonia (Carrier of ammonia Glutamine, Alanine).
- d) Urea cycle Detailed account, Linkage of urea & TCA cycle, Compartmentation of urea cycle, Regulation, Metabolic disorders of Urea cycle, Treatment of disorder of urea cycle.
- e) Transmethylation & Decarboxylation.
- f) Metabolism of phenylalanine. Glycogenic and ketogenic amino acids.

UNIT IV

Nucleic acid metabolism: -

- a) Biosynthesis of purine nucleotides & its regulation (De novo synthesis), Recycling of purine bases by salvage pathway using PRPP.
- b) Catabolism of purine nucleotides, Gout.
- c) Biosynthesis of pyrimidine nucleotides De novo synthesis, its regulation & Salvage synthesis.
- d) Catabolism of pyridimine nucleotides.
- e) Ribonucleotides as precursors of deoxiribonucleotides (Ribonucleotide reductase & its regulation)
- f) Concept of cyclic nucleotides in metabolism, cAMP.

* * * * * * *

B. Sc. Part III

Semester VI

PAPER – II

MOLECULAR BIOLOGY & rDNA TECHNOLOGY

UNIT -I:

Genetic Code & Decoding System: -

- a. **The Genetic Code**: Features of genetic code, Deciphering the genetic code, Wobble hypothesis,
- b. **The decoding system:** i) Aminoacyl synthatases, ii) Brief structure of t-RNA, iii) Attachment of amino acid to t-RNA, iv) Error correction in amino acylation.
- c. Selection of initiation codon (Shine-Dalgarno sequence).

UNIT II

Translation:

Protein synthesis- Initiation, Elongation & Termination (Ribosome structure, A and P sites, charged tRNA, fmet tRNA, initiator codon, formation of 70S initiation complex, role of EF-Tu, EF-Ts, EF-G, and GTP. Release factors RF1 and RF2.

Post - translational modification of protein – Loss of signal sequence, Proteolytic processing, Attachment of carbohydrate side chains.

UNIT -III:

Basic Introduction to rDNA Technology

- a. **Terminology**: rDNA, Vector, Host, DNA cloning, Genetic engineering.
- b. **Restriction endonucleases**: Restriction-modification system, types of restriction enzymes, sticky and blunt ends.
- c. **Joining DNA molecules**: joining blunt ended molecules, homopolymer tail joining, joining cohesive ends, use of T4 DNA ligase, use of linkers and adaptors.

d. Vectors: Plasmids – Characteristics of an Ideal Vector, Types of plasmids: pBR322 and pUC18. Lambda insertion and replacement vectors, cosmids, phagemids, Ti-plasmid. Concept of expression vectors. Features of expression vectors necessary for expression of heterologous genes. Shuttle vectors.

UNIT -IV:

Basic Introduction to rDNA Technology

- a) **Methods** of **transformation/transfection**: Calcium-phosphate precipitation, Electroporation,
- b) **Selection**: selection by the use of antibiotic resistance, blue-white screening.
- c) **Screening methods**: functional cloning or complementation, southern and northern blotting, western blotting, immunological methods, screening through protein activity.
- d) **Genomic and cDNA libraries**: Method of generating genomic and cDNA library, comparison between the two types of libraries, Advantages and disadvantages of cDNA library.
- e) **Polymerase chain reaction**: Detailed procedure of PCR, important considerations for primer designing, Salient applications of PCR.
- f) **Applications of recombinant DNA technology**: Brief idea about recombinant DNA products in medicine (insulin, hGH), Recombinant vaccines, Gene therapy, DNA fingerprinting, Bt cotton, herbicide resistance.

B. Sc. Part III Semester VI

PRACTICALS

- 1) Estimation of serum urea by diacetyl monoxime method.
- 2) Assay of activity of SGOT & SGPT.
- 3) Assay of activity of serum acid & alkaline phosphatase.
- 4) Inhibition of alkaline phosphatase activity by EDTA.
- 5) Assay of activity of papain.
- 6) Determination of serum phospholipids.
- 7) Determination of serum lipase.
- 8) Determination of serum isocitrate dehydrogenase.
- 9) Estimation of lipase by titrimetric method.
- 10) Demonstration of isolation of plasmid by alkaline lysis method.
- 11) Demonstration of isolation of genomic DNA.
- 12) Demonstration of Southern / western blotting.
- 13) Demonstration of replica plating technique.
- 14) Demonstration of restriction digestion
- 15) Identification of Lac+ bacteria by blue white screeing using IPTG
- 16) Determination of uric acid in urine
- 17) Determination of ketone bodies in urine
- 18) Determination of urinary ammonia

(Mandatory to perform at least seven practical)

* * * * * * *

Semester VI

BOOKS FOR REFERENCE

- 1) Harper's Biochemistry Murray, Granner, Mayes, Rodwell Prentice Hall International Inc.
- 2) Biochemistry Lehninger CBS Publishers.
- 3) Biochemistry Stryer W. H. Freeman & Co. New York.
- 4) Biochemistry Geoffrey L. Zubay McGraw Hill.
- 5) Biochemistry J. David Rawn Neil Patterson publs. NC.
- 6) Textbook of Biochemistry-West, Todd, Mason, Bruggen Amerind Publishing Co. Pvt. Ltd.
- 7) Mol Bio (Fundamentals of molecular biology) Upadhyay & Upadhyay, Himalaya Publishing House.
- 8) Molecular Biology David Friefelder Narosa Publishing House, New Delhi.
- 9) Cell Biology, Genetics, Molecular Biology, Evolution & Ecology Verma, Agarwal S. Chand & Co.
- 10) Molecular & Cell Biology Bhamrah Anmol Publ. Pvt. Ltd., New Delhi.
- 11) Molecular Biology of the Cell Alberts, Bray, Lewis, Raff, Roberts, Watson Garland Publishers, New York.
- 12) Molecular Biology of the gene J. D. Watson, NH Hopkins, Roberts, Stertz, Weiner-Freeman.
- 13) Concepts in Biotechnology Editors- Balasubramanian, Bryee, Dharmalingam, Green, Jayraman Sangam Books.
- 14) Molecular Biology of the Gene Watson, Hopkins, Roberts, Steitz, Weiner Benjamin Cummings Publishing Co.
- 15) Molecular Cell Biology Baltimore, Zipursky, Matsudaria, Darnel W. H. Freeman & Co., New York.
- 16) Outlines of Biochemistry Conn & Stumpf.
- 17) Principles of Biochemistry White, Handler, Smith McGraw Hill Publ.
- 18) Cell & Molecular Biology Phillip Sheller Wiley Publ.
- 19) Introduction to Modern Biochemistry Karlson Academic Press.