Course Code: CT501 Title of the Course: Advanced Data Structure

Course Scheme					Evaluation S	cheme (Theo	ory)	
Lecture	Tutorial	Practical	Periods/week	Credits	edits Duration of paper, hrs MSE IE ES			ESE	Total
03	01		04	03	03	10	10	80	100

Unit	Contents	Hours
Ι	Overview of data structures arrays, stacks, queues, link list, trees, graphs. Sparse matrix	09
	Priority queues – definition, ADT, realizing a priority queue using heaps, definition, insertion,	
	deletion, application-heap sort, external sorting- model for external sorting, multiway merge,	
	polyphase merge.	
II	Dictionaries, linear list representation, skip list representation, operations-	09
	insertion, deletion and searching, hash table representation, hash functions, collision	
	resolution-separate chaining, open addressing-linear probing, quadratic probing, double	
	hashing, rehashing extendible hashing, comparison of hashing and skip lists.	
III	search trees (part i) : binary search trees, definition, adt implementation, operations-searching	09
	insertion and deletion, balanced search trees- AVL trees, definition, height of an AVL tree,	
	representation, operations - insertion, deletion and searching.	
IV	Search trees (part ii) : introduction to red -black trees and splay trees, B-trees-B-tree of order-	09
	m, height of a B-tree, insertion, deletion and searching, comparison of search trees.	
	Definitions & operations on weight balanced trees (Huffman trees), 2-3 trees. Augmenting	
	red-black trees to dynamic order statistics and interval tree applications. Operations on disjoint	
	sets and its union-find problem implementing sets. Dictionaries, priority queues and	
	concatenable queues using 2-3 trees.	
V	Mergeable heaps: Mergeable heap operations, binomial trees implementing binomial heaps	09
	and its operations, 2-3-4. Trees and 2-3-4 heaps. Fibonacci heap.	
	Graph theory definitions: definitions of isomorphic components. Circuits, fundamental circuits,	
	cut-sets. Cut-vertices planer and dual graphs, spanning trees, kuratovski's two graphs.	
	Total	45

Text Book/s:

1. A. A. Puntambekar, "Advance Data Structures", Technical Publications, 2007

2. Peter Brass, "Advance Data Structures", Cambridge University Press, 2008

Course Code: CT502 Title of the Course: Design and Analysis of Algorithms

Course Scheme					Evaluation S	cheme (Theo	ory)	
Lecture	Tutorial	Practical	Periods/week	Credits	edits Duration of paper, hrs MSE IE		ESE	Total	
03	01		04	03	03	10	10	80	100

Unit	Contents	Hours
Ι	Introduction: Analyzing and Designing algorithm, Asymptotic notations: Big Oh, Omega,	09
	Theta notation, Average, Best and Worst case analysis of algorithms for Time and Space	
	complexity, Amortized Analysis, Solving Recurrence Equations using Substitution method,	
	Recursion-Tree Method and Master method.	
II	Divide-and-Conquer and Greedy Strategy: Binary Search, Merge and Quick Sort, The maximum-subarray problem, Strassen's algorithm for matrix multiplication. Greedy Method-General Strategy, Knapsack problem, Job sequencing with deadlines problem, minimum cost spanning trees: Prim's algorithm, Kruskal's algorithm, Single source shortest path: Bellman-Ford algorithm, Dijkstra's algorithm, Difference constraints and shortest paths, Huffman Coding etc.	09
III	Dynamic Programming: Basic strategy, all pair shortest path: Shortest paths and matrix multiplication, Floyd-Warshall algorithm, Single source shortest paths, optimal binary search trees, Matrix-chain Multiplication, Elements of dynamic programming, traveling salesman problem.	09
IV	Backtracking and Hash tables: The general method, 8-Queen's problem, Sum of subsets, Graph Coloring, Hamiltonian Cycle, Graph Coloring, Hash tables, Hash functions, Open addressing.	09
V	NP-Hard And NP-Complete Problems: Basic concepts, Non-Deterministic algorithm, The Classes NP-Hard and NP-complete. NP-Complete problems-Satisfiability problem, vertex cover problem. NP-Hard graph problem, scheduling problem, code generation problems, Simplified NP Hard Problems.	09
Total		45

Text Book/s:

- 1. T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein, "Introduction to Algorithms", Third Edition, PHI.
- 2. Ellis Horowitz, Sartaj Sahani, Rajasekaran, "Fundamentals of Computer Algorithms", Second Edition, Universities Press.

References:

- 1. A. V. Aho and J.D. Ullman, "Design and Analysis of Algorithms", Addison Wesley
- 2. Brassard, Bratley, "Fundamentals of Algorithms", PHI

Course Code: CT503 Title of the Course: Java Programming

Course Scheme					Evaluation S	cheme (Theo	ory)	
Lecture	Tutorial	Practical	Periods/week	Credits	lits Duration of paper, hrs MSE IE ESE			ESE	Total
04	01		05	04	03	10	10	80	100

Unit	Contents	Hours
Ι	A look at procedure oriented programming - Object oriented programming paradigm -	09
	Basic concepts of object oriented programming - Benefits of OOP - What is java? - Simple	
	java program- Java vs. C++-Tokens - Keywords - Identifiers and constants -Data types -	
	Type Conversions and Casting - Arrays-Operators - Control statements in java. Class	
	fundamentals -Declaring Objects- Assigning Object Reference Variables - introducing	
	methods- constructors -this keyword- garbage Collection - finalize () method - overloading	
	methods- objects as parameters- returning objects- access control - static- final keyword-	
	Nested classes - Innerclasses- classes with command line arguments	
II	Basics- Super keyword- Multilevel Hierarchy- Invoking Constructors- Method overriding	09
	Abstract Classes - Using Final with Inheritance- Packages- Access Protection - Importing a	
	Packages-Interfaces-Special String Operations - Character Extraction - String Comparison -	
	Modifying a String –String Buffer-String Tokenizer.	
III	Exception: Types – Uncaught Exceptions – Using Try Catch – Multiple Catch – Nested Try –	09
	throw- throws- finally - Built in Exceptions- Using Exceptions- Character Streams- Stream	
	I/O- Serialization.	
	Multithreading: The Java thread model, the main thread, creating a thread, creating multiple	
	threads, synchronization, interthread communication.	
IV	Applet : Architecture- Skeleton- Simple Applet Display Methods- HTML APPLET tag -	09
	Passing Parameters to the Applet- AudioClip and AppletStub Interface.	
	Event Handling: Delegation Event Model – Event Classes – Event Insteller Interfaces-Programs	
	Check house Choice controls and Seroll have Levent Managers and Manus	
V	Check boxes- Choice controls and Scroll bars- Layout Managers and Menus.	00
v	Java Beans: Introduction to Java Beans, Advantage, Properties, BDK, Introduction to EJB, Java Beans API	09
	Introduction to Swing: JApplet, Handling Swing Controls like Icons – Labels – Buttons –	
	Text Boxes – Combo – Boxes – Tabbed Pains – Scroll Pains – Trees – Tables Differences	
	between AWT Controls & Swing Controls Developing a Home page using Applet & Swing.	
	Total	45

Text Book/s:

1. D.Norton and H. Schildt, "Java 2 -The complete Reference", Fifth edition, TMH, 2002 (Reprint 2009) **Reference Book/s:**

- 1. By Kathy Sierra, Bert Bates, "Head First Java", Second Edition, O'Reilly Media, 2005
- 2. M.Deitel and Deitel, "Java- How To Program" 7/e, Prentice Hall Publications.
- 3. Paul Deitel, Harvey M Deitel, Java for Programmers, Pearson, 2010.
- 4. Elliote Rusty Harold, "Java Network Programming" Third Edition, O'Reilly Publishers.
- 5. "Java Cook Book", Second Edition O'Reily Media 2002.

Course Code: CT504 Title of the Course: System Programming

Course Scheme						Evaluation S	cheme (Theo	ory)	
Lecture Tutorial Practical Periods/week Credits Duration of paper, hrs MSE				IE	ESE	Total				
	03	01		04	04	03	10	10	80	100

Unit	Contents	Hours
Ι	Background Machine Structure, Assemblers, Loaders, Macros, Compilers, Formal System,	09
	Operating system User Viewpoint : Functions, Operating System User Viewpoint: Batch	
	Control Language, Operating System User Viewpoint: Facilities.	
II	Machine Structure, Machine Language, And Assembly Language General Machine Structure,	10
	General Approach to a New Machine,	
III	Assemblers General Design Procedure, Design of Assembler. Macro Language and the Macro	9
	processor Macro instructions, features of Macro Facility, Macro Instruction Arguments,	
	Conditional Macro Expansion, Macro Calls within Macros, Macros Instructions Defining	
	Macros, Implementation, Implementation of a restricted Facility A Two pass Algorithm, A	
	Single pass Algorithm, Implementation of Macro Calls within Macros, Implementation within	
	an Assembler.	
IV	Loaders Loader schemes, "Compile and go" Loaders, general Loader scheme, absolute	09
	loaders, subroutine linkages, relocating loaders, direct linking loaders, other loader schemes-	
	Binders, linking loaders; Overlays, Dynamic Binders, Design of and absolute Loaders, Design	
	of a Direct-Linking loaders	
V	Introduction to Device Drivers. Device drivers for Windows, Linux/Unix.	08
	Lexical Analysis in Compiler Design. Role of lexical analysis, recognition of tokens.	
Total		45

Text Books:

- 1. Systwm Programming by John J. Donovan, Mc Graw Hill
- 2. System Programming by Leland Beck, Pearson Ed.
- 3. Assembly & Assemblers by Gorshine, Prentice Hall.

Reference Book/s:

- 1. Unix device drives by George Pajani, Pearson Ed.
- 2. Device Drives for Windows by Norton, Add Wesley

Course Code: CT505 Title of the Course: Design Principles of Programming Languages

Course Scheme					Evaluation S	cheme (Theo	ory)		
	Lecture	Tutorial	Practical	ctical Periods/week Credits Duration of paper, hrs MSE IE		ESE	Total			
	03	01		04	04	03	10	10	80	100

Unit	Contents	Hours
Ι	Languages Design Issues: Why Study Programming Languages, Role of Programming	10
	Languages, Programming Environment, Impact of Machine Architectures: Operations of a	
	Computer, Virtual Computers and binding times.	
	Language Translation Issues: Programming Language Syntax, Stages in translation	
II	Elementary Data types: Properties of Types & objects, Scalar data types, Composite Data	08
	types.	
III	Encapsulation: Structured data types, Abstract data types, Encapsulation by subprograms,	09
	Type definition. Inheritance, Polymorphism.	
IV	Sequence Control: Implicit and Explicit Sequence Control, Sequencing with arithmetic	09
	expressions, Sequence control between statements, sequencing with non-arithmetic statements,	
	Subprogram Control: Subprogram Sequence Control, Attributes of data control, parameters	
	transmission.	
V	Storage Management: Elements requiring storage, programs & system controlled storage,	09
	static storage management, Distributed Processing :- Variations in subprogram control,	
	Parallel programming.	
Total		45

Text Book/s:

- 1. Programming Languages: Design and Implementation by Terrance W. Pratt, Marvin V. Zelkowitz & T.V. Gopal (Pearson Education)
- 2. Programming Languages: Paradigm and Practice by Doris Appleby & Julius J. VandeKopple (Tata McGraw-Hill Edition)

Course Code: CT506 Title of the Course: Advanced Data Structure

Course Scheme					Evaluatio	on Scheme (l	Laboratory)
Lecture	Lecture Tutorial Practical Periods/week Credits				TW	POE	Total
		01	03	02	25	25	50

List of Practicals
Practical no .1 &2 should be based on Abstract data type
Practical no .3 should be based on priority queue
Practical no .4 should be based on dictionary
Practical no .5 &6 should be based on binary search tree and AVL tree
Practical no .7 should be based on Search trees ,red black tree ,B-tree
Practical no .8 should be based on Huffman tree
Practical no .9 &10 should be based on mergeable heaps

Course Code:CT507Title of the Course:Design and Analysis of Algorithms

Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Tutorial	Practical	Periods/week	Credits	TW	POE	Total
		01	03	02	25	25	50

Practicals
Practical No. 1 & 2 should be based on Unit No.I
Practical No.3 & 4 should be based on Unit No. 2
Practical No. 5 & 6 should be based on Unit No. 3
Practical No. 7 & 8 should be based on Unit No. 4
Practical No. 9 & 10 should be based on Unit No. 5

Course Code: CT508 Title of the Course: Java Programming

Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Tutorial	Practical	Periods/week	Credits	TW	POE	Total
		01	03	02	25	25	50

	List of Practicals					
Students	Students are expected to perform 10 practicals from the given list					
1.	Programs illustrating overloading and overriding method in JAVA.(Use any application)					
2.	Programs illustrating the implementation of various forms of inheritance (Ex. Single, Hierarchical, Multilevel inheritance etc).					
3.	Programs which illustrates the implementation of multiple inheritance using interfaces in JAVA.					
4.	Programs which illustrates the Implementation of Inheritance by Method overriding, Super constructor and super keyword, abstract class (Use any application)					
5.	Programs which illustrate the manipulation of strings:1) Sorting an array of strings in ascending order. 2) Frequency count of words and characters in a text file. Etc.,					
6.	Programs for sorting and searching a list of elements.					
7.	Programs for addition and multiplication of matrices.					
8.	Programs to create packages in JAVA.					
9.	Programs to create multiple threads in JAVA.					
10.	Programs to write applets to draw the various shapes: a) Cylinder b) Cube c) Square inside a circle d) Circle inside a square e) Polygons etc.,					
11.	Create and manipulate labels, lists, text fields, text areas and panels.					
12.	Understand and handle mouse events and keyboard events.					
13.	Client/Server interaction with stream socket connections (Use NET packages).					
14.	Exception Handling for – (a) Divide by zero error (b) Null values (c) Data entry					
15.	Program to read the data from user and save it to two different files, display the contents and exchange the contents of those two files using IO package.					
16.	Develop an animation program using Multithreading viz. Bouncing Ball.					
17.	Program to scroll the banner using applet.					
18.	Design 8-digit calculator using AWT package and layout managers.					
19.	Implementation of Client / Server mechanism using Socket classes.					
20.	Design Database program for Employee details and implement INSERT, SELECT, DELETE, UPDATE queries using JDBC					
21.	Design concurrent server that will handle multiple clients using multithreading.					

Course Code: CT509 Title of the Course: Programming-II

Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Tutorial	Practical	Periods/week	Credits	TW	POE	Total
		01	03	02	25	25	50

Practicals
1^{st} , 2^{nd} and 3^{rd} practical should be on program development using netbeans, eclipse and
Jcreator
4 th practical should be on GUI designing using dreamweaver.
5 th and 6 th practical should be on developing java server pages.
7 th practical should be on use of apache tomcat server.
8 th and 9 th practical should be on introduction to android application development