III - SEMESTER B.E. (COMPUTER SCIENCE & ENGINEERING)

Course	Course Title	Т	eachi	ng Sc	heme					Examina	tion Scher	ne			
Code		Но	ours p	er	No. of			Theo	ry				Prac	tical	
			week		Credits										
		L	т	Ρ		Duration	Max.	Ma	х.	Total	Min.	Max.	Max.	Total	Min.
						of Paper (Hrs.)	Marks	Mai	rks		Passing Marks	Marks	Marks		Passing Marks
								Sessi	onal						
							ESE	MSE	IE			TW	POE		
3BECS01	Applied Mathematics-III	3	1	0	4	3	80	10	10	100	40	-	-	-	-
3BECS02	Computer Architecture &	3	1	0	4	3	80	10	10	100	40	-	-	-	-
	Organization														
3BECS03	Advanced- C Programming	3	1	-	3	3	80	10	10	100	40	-	-	-	-
3BECS04	Basic Electronics	3	1	-	3	3	80	10	10	100	40	-	-	-	-
3BECS05	Digital Circuits & Fundamentals	3	1	-	3	3	80	10	10	100	40	-	-	-	-
	of Microprocessor														
			-	-						-					
3BECS06	Advanced- C Programming	0	0	2	2	-	-	-	-	-	-	25	25	50	25
3BECS07	Basic Electronics	0	0	2	2	-	-	-	-	-	-	25	25	50	25
3BECS08	Digital Circuits & Fundamentals of Microprocessor	0	0	2	2	-	-	-	-	-	-	25	25	50	25
		23	-												
26 23					23					500				150	
		650													

IV - SEMESTER B.E. (COMPUTER SCIENCE & ENGINEERING)

Course	Course Title	Т	eachi	ng So	heme					Examina	tion Scher	ne			
Code		Но	ours p	er	No. of			Theo	ry				Pra	ctical	
			week		Credits										
		L	т	Р		Duration	Max.	Ma	ax.	Total	Min.	Max.	Max.	Total	Min.
						of Paper	Marks	Ma	rks		Passing	Marks	Marks		Passing
						(Hrs.)					Marks				Marks
								Sessi	onal						
							ESE	MSE	IE	-		тw	POE		
4BECS01	Applied Mathematics – IV	3	1	0	4	3	80	10	10	100	40	-	-	-	-
4BECS02	Data Structures	3	1	-	3	3	80	10	10	100	40	-	-	-	-
4BECS03	Database Management System	3	1	-	3	3	80	10	10	100	40	-	-	-	-
4BECS04	Theory of Computation	3	1	0	4	3	80	10	10	100	40	-	-	-	-
4BECS05	Object Oriented Programming	3	1	-	3	3	80	10	10	100	40	-	-	-	-
4BECS06	Data Structures	0	0	2	2	-	-	-	-	-	-	25	25	50	25
4BECS07	Database Management System	0	0	2	2	-	-	-	-	-	-	25	25	50	25
4BECS08	Object Oriented Programming	0	0	2	2	-	-	-	-	-	-	25	25	50	25
				-						-				-	
		15	5	6	23										
		26 23								500				150	
						650									

V - SEMESTER B.E. (COMPUTER SCIENCE & ENGINEERING)

Course	Course Title	Т	eachi	ing Sc	heme					Examina	tion Scher	ne			
Code		Ho	ours p week	er	No. of Credits		-	Theo	ry		-		Prac	ctical	
		L	т	Р		Duration of Paper (Hrs.)	Max. Marks	Ma Ma	ıx. rks	Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
								Sessi	onal						
							ESE	MSE	IE			TW	POE		
5BECS01	System Programming	3	1	0	3	3	80	10	10	100	40	-	-	-	-
5BECS02	Design and Analysis of Algorithms	3	1	-	3	3	80	10	10	100	40	-	-	-	-
5BECS03	Java Programming	3	1	-	3	3	80	10	10	100	40	-	-	-	-
5BECS04	Software Engineering	3	1	-	3	3	80	10	10	100	40	-	-	-	-
5BECS05	IDCC-I	3	0	0	3	3	80	10	10	100	40	-	-	-	-
		-		T	1	n			-		1	1		-	
5BECS06	Design and Analysis of Algorithms	0	0	2	2	-	-	-	-	-	-	25	25	50	25
5BECS07	Java Programming	0	0	2	2	-	-	-	-	-	-	25	25	50	25
5BECS08	Software Engineering	0	0	2	2	-	-	-	-	-	-	25	25	50	25
5BECS09	Seminar	0	0	2	2	-	-	-	-	-	-	50	-	50	25
				T	1			1	-		1	1			
		15	4	8	23										
		27 23								500				200	
						700									

Seminar: A student is required to prepare an advanced technical topic of his/her area of interest from the stream and deliver before a seminar guide. Also he/she is required to submit seminar report.

VI - SEMESTER B.E. (COMPUTER SCIENCE & ENGINEERING)

Course	Course Title	Course Title Teaching Sch Hours per								Examina	tion Scher	ne			
Code		Но	ours p week	ber K	No. of Credits			Theo	ry	-			Prac	ctical	
		L	т	Р		Duration of Paper (Hrs.)	Max. Marks	Ma Ma	ax. rks	Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
								Sessi	onal						
							ESE	MSE	IE			TW	POE		
6BECS01	Web Technology	3	1	-	3	3	80	10	10	100	40	-	-	-	-
6BECS02	Computer Network & Communication	3	1	-	3	3	80	10	-	-	-	-			
6BECS03	Computer Graphics	3	1	-	3	3	80	10	40	-	-	-	-		
6BECS04	Principles of Management	3	1	0	3	3 80 10 10 100 40							-	-	-
6BECS05		3	0	0	3	2	80	10	10	100	40		_	_	-
6BECS06	Audit Heads	0	0	0	5	5		10	10	buA	it Course	2			
		-		-		I									
6BECS07	Web Technology	0	0	2	2	-	-	-	-	-	-	25	25	50	25
6BECS08	Computer Network & Communication	0	0	2	2	-	-	-	-	-	-	25	25	50	25
6BECS09	Computer Graphics	0	0	2	2	· · · · · · ·						25	25	50	25
6BECS10	Industry Exposure Program	0	0	0	2								-	50	25
		15	4	6	23										
			25		23					500				200	
	·					700									

Note: Industry Exposure Program for two weeks shall be required to be completed by every student by beginning of the semester.

VII - SEMESTER B.E. (COMPUTER SCIENCE & ENGINEERING)

Course	Course Title	Т	eachi	ng Sc	heme					Examina	tion Scher	ne			
Code		Но	ours p	er	No. of			Theo	ry				Prac	tical	
			week		Credits										
		L	Т	Р		Duration of Danor	Max.	Ma	AX. rkc	Total	Min.	Max.	Max.	Total	Min.
						(Hrs.)	IVIALKS	IVIA	rks		Marks	IVIALKS	Warks		Marks
								Sessi	onal	_					
										-					
							ESE	MSE	IE			TW	POE	ļ	
7BECS01	Operating System	3	1	0	3	3	80	10	10	100	40	-	-	-	-
7BECS02	Software Testing and Quality Assurance	3	1	0	3	3	80	10	10	100	40	-	-	-	-
7BECS03	Computer System Security	3	1	-	3	3	80	10	10	100	40	-	-	-	-
7BECS04	TCP/IP and Internet	3	0	-	3	3	80	10	10	-	-	-	-		
7BECS05	CE-I	4	0	0	4	3 80 10 10 40							-	-	-
	1.Neural Network & Fuzzy Logic					3 80 10 10 100 40								Í	
	2.Advanced Computer Architecture													Í	
	4. Multimedia Systems									Í					
	5.Digital Image Processing													Í	
	·			•	•	•	•					•	•		
7BECS06	Computer System Security	0	0	2	2	-	-	-	-	-	-	25	25	50	25
7BECS07	TCP/IP and Internet	0	0	2	2	-	-	-	-	-	25	25	50	25	
7BECS08	Major Project Literature Review & Presentation	0	0	2	4	-	-	25	25	50	25				
		16	3	6	24										
			25		24					500				150	
	1	650 650													

BACHELOR OF ENGINEERING (FOUR YEARS DEGREE COURSE) IN FACULTY OF SCIENCE & TECHNOLOGY) TEACHING AND EXAMINATION SCHEME WITH CHOICE BASED CREDIT SYSTEM VIII - SEMESTER B.E. (COMPUTER SCIENCE & ENGINEERING)

Course	Course Title	Т	eachi	ing Sc	heme					Examina	tion Scher	ne			
Code		Но	ours p week	er	No. of Credits			Theo	ry				Prac	tical	
		L	т	Р		Duration of Paper (Hrs.)	Max. Marks	Ma Ma	ax. rks	Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
								Sessi	onal						
							ESE	MSE	IE			тw	POE		
8BECS01	Compiler Construction	3	1	-	3	3	80	10	10	100	40	-	-	-	-
8BECS02	Data Warehousing and Data Mining	3	1	-	3	3	80	10	10	100	40	-	-	-	-
8BECS03	CE-II 1.Cloud Computing 2.Advanced Database 3.Distributed System 4.E-Commerce	4	0	0	4	3	80	10	10	100	40	-	-	-	-
8BECS04	OE-I	2	0	0	2	3	80	10	10	100	40	-	-	-	-
8BECS05	Compiler Construction	0	0	2	2	-	-	-	-	-	-	25	25	50	25
8BECS06	Data Warehousing and Data Mining	0	0	2	2	-	-	-	-	-	-	25	25	50	25
8BECS07	Major Project	0	0	6	6	-	-	-	-	-	-	75	75	150	75
		12	2	10	22										
		24 22								400				250	
						650									

INTER DISCIPLINARY CLUSTER COURSES

		V – SEMESTER				VI - SEMESTER	
S.N.	COURSE TITLE	CODE	PARENT BOS	S.N.	COURSE TITLE	CODE	PARENT BOS
01			ELECTRICAL (EEE)	01			ELECTRICAL (EEE)
02			MECHANICAL	02			MECHANICAL
03			CIVIL	03			CIVIL
04			MINING	04			MINING
05			EN/ ECE/ EXTC	05			EN/ ECE/ EXTC
06	Cyber Security	5BECS05/5BECT05	CT/CSE	06	Internet & Web	6BECS05/6BECT05	CT/CSE
					Technology		
07			INFORM. TECH.	07			INFORM. TECH.
08			INSTRUMENTATION	08			INSTRUMENTATION

LIST OF AUDIT COURSES/ EVENTS

01	Business Communication Skills	07	
02	Advanced Excel	08	
03		09	
04		10	
05		11	
06		12	

PROPOSED COURSES FOR OPEN ELECTIVE

01	Financial Management	04	Project Management & Quality
02	Foundation Course in HR Mgmt.	05	Cyber laws: International Perspective
03	Entrepreneur Development	06	Corporate Ethics

Appendix A

GONDWANA UNIVERSITY, GADCHIROLI FACULTY OF SCIENCE AND TECHNOLOGY CONSLIDATED STATEMENT OF VARIOUS PARAMETERS IN TEACHING & EXAMINATION SCHEME OF B.E. (COMPUTER SCIENCE & ENGINEERING)

SR.NO.	SEMESTER	NO. OF	NO OF	TEACHING	TEACHING	TOTAL	MAX.	MAX.PRACT	MAX.
		THEORY	LABS/PRACT	HOURS(TH)	HOURS	CREDIT	THEORY	MARKS	MARKS
		COURSES		(L+T)	(PRACT)		MARKS		TOTAL
1	III	5	3	20	6	23	500	150	650
2	IV	5	3	20	6	23	500	150	650
3	V	5	4	19	8	23	500	200	700
4	VI	5	4	19	6	23	500	200	700
5	VII	5	3	19	6	24	500	150	650
6	VIII	4	3	14	10	22	400	250	650
		29	20	111	42	138	2900	1100	4000

Course wise Board of Studies Affiliation

Board of Studies	Course Codes
APPLIED SCIENCES & HUMANITIES	3BECS01, 4BECS01
ELECTRONICS ENGINEERING	3BECS04, 3BECS05

Choice-based Credit System (CBCS) III-Semester B. E. (Computer Science & Engineering)

Course Code:3BECS01Title of the Course:Applied Mathematics-III

		Course Sch	neme		Evaluation S	cheme (Theo	ry)	
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
03	01		04	04	03	10	10	80	100

Unit	Contents	Hours
Ι	Z-Transform:	11
	Definition, Properties, Inverse by partial fractions and convolution theorem. Application of Z-	
	Transform to solve differential equations with constant coefficients.	
	Fourier Integers and Fourier Transforms.	
II	Matrices:	08
	Inverse of Matrix by adjoint and partitioning method. Rank of Matrix and consistency of	
	system of linear simultaneous equations. Linear dependence. Eigen Values and Eigen Vector,	
	Reduction to diagonal form.	
III	Matrices:	08
	Cayley-Hamilton Theorem, Sylvester's Theorem (statement only) . Solution of second order	
	ordinary linear differential equations with constant coefficients by matrix method, Largest	
	Eigen value and corresponding Eigen vector by iteration.	
IV	Random Variables and Probability Distributions:	09
	Random variables discrete and continuous, Probability functions and distribution functions	
	for discrete and continuous random variables, Joint distribution.	
V	Mathematical Expectation:	09
	Mathematical expectation, Variance and Standard Deviation, Moments, Moment generating	
	function, Coefficient of Skewness & Kurtosis.	
	Total	45

Text Book/s:

- 1. Higher Engineering Mathematics by B.S. Grewal
- 2. Probability and Statistics by Murray R. Spiegel

- 1. A Text Book of Engineering Mathematics by N.P.Bali and Manish Goyal.
- 2. Mathematics of Engineers, Chandrika Prasad
- 3. Advance Mathematics for Engineers, Chandrika Prasad
- 4. Applied Mathematics for Engineers, L.A. Pipes & Harville
- 5. A Text Book of Applied Mathematics, P.N. Wartikar & J.N. Wartikar

Course Code:3BECS02Title of the Course:Computer Architecture & Organization

Course Scheme					Evaluation Scheme (Theory)				
Lecture	Lecture Tutorial Practical Periods/week Credits		Duration of paper, hrs	MSE	IE	ESE	Total		
03	01		04	04	03	10	10	80	100

Unit	Contents	Hours
Ι	Basic Structure of Computer Hardware and Software: Functional Units, Basic Operational	9
	concepts, Bus Structures, Software, Distributed Computing.	
	Addressing Methods and Machine Program Sequencing : Memory Locations, Addresses and	
	Encoding of Information, Main Memory Operations, Instructions and Instruction Sequencing,	
	Addressing Modes, Assembly Language, Stacks, Subroutine.	
II	The processing Unit: Some Fundamental Concepts, Execution of a complete Instruction,	9
	Sequencing of Control Signals.	
	Computer peripherals : I/O Devices.	
	Processors: Introduction to RISC Processors, Array Processors, Loosely coupled, Tightly	
	coupled Systems.	
III	Microprogrammed Control: Microinstructions, Grouping of control signals, Micro Program	9
	Sequencing, Micro instructions with next address field, Perfecting Microinstructions,	
	Emulation, Bit Slices, Introduction to Microprogramming.	
IV	Arithmetic : Number Representation, Addition of Positive Numbers, Logic Design for Fast	9
	Adders, Addition and Subtraction, Arithmetic and Branching Conditions, Multiplications of	
	positive numbers, Signed – Operand Multiplication, Fast Multiplication.	
V	The Main Memory: Some Basic Concepts, Semiconductor RAM Memories, Memory System	9
	Considerations, Semiconductor ROM Memories, Multiple module Memories and Interleaving,	
	Cache Memories, Virtual Memories, Memory Management Requirements.	
	Total	45

Text Book/s:

- 1. V.Carl Hamacher, Zvonko G. Varanesic and Safat G. Zaky, "Computer Organization", V edition, McGraw-Hill Inc, 1996. Organisation", V edition, McGraw-Hill Inc, 1996
- 2. Computer Organization & Architecture 7e By william Stallings PHI, edition

Reference Book/s:

1. Computer System architecture: M. Morris Mano PHI, edition

Course Code:3BECS03Title of the Course:Advanced-C Programming

Course Scheme					Evaluation Scheme (Theory)				
Lecture	ture Tutorial Practical Periods/week Credits				Duration of paper, hrs	MSE	IE	ESE	Total
03	01		03	03	03	10	10	80	100

Unit	Contents	Hours
Ι	Introduction to Problem Solving: Flow charts, Tracing flow charts, Problem solving methods,	09
	Need for computer Languages, C Language preliminaries: C character set, Identifiers and	
	keywords, Data types, Declarations, Expressions, statements and symbolic constants ,	
	Operators and expressions: Arithmetic, unary, logical, bit-wise, assignment and conditional	
	operators, Control statements: While, do-while, for statements, nested loops, if else, switch,	
	break, Continue, and goto statements, comma operators .	
II	Storage types: Automatic, external, register and static variables. Functions: Defining and	09
	accessing, passing arguments, Function prototypes, Recursion, Library functions, Static	
	functions.	
	Arrays: Defining and processing, Passing arrays to a function, Multi-dimensional arrays.	
III	Strings: Defining and handling of stings, operations on strings.	09
	Pointers: Declarations, Passing pointers to a function, Operations on pointers, Pointer	
	Arithmetic, Pointers and arrays, Arrays of pointers function pointers.	
IV	Structures: Defining and processing, Passing to a function, Unions, typedef, array of structure,	09
	and pointer to structure.	
	Dynamic Memory Allocation.	
V	File structures: Definitions, concept of record, file operations: Storing, creating, retrieving,	09
	updating Sequential, relative, indexed and random access mode, Files with binary mode(Low	
	level), performance of Sequential Files, Direct mapping techniques: Absolute, relative and	
	indexed sequential files (ISAM) concept of index, levels of index, overflow of handling. File	
	Handling: File operation: creation, copy, delete, update, text file, binary file. Combining	
	Command-line Arguments and File I/O.	
	Total	45

Text Book/s:

- 1. Teach Yourself C by Herbert Schildt, 3rd edition, Tata McGraw Hill
- 2. C: The Complete reference, by Herbert Schildt, 4thedition, Tata McGraw Hill
- 3. C programming by E.Balagurusamy, Tata McGray Hill

- 1. Let Us C by Y. kanetkar, BPB Publication.
- 2. Mastering C by K R Venugopal & Prasad, Tata McGray Hill

Course Code:3BECS04Title of the Course:Basic Electronics

Course Scheme					Evaluation Scheme (Theory)				
Lecture	Lecture Tutorial Practical Periods/week Credits		Duration of paper, hrs	MSE	IE	ESE	Total		
03	01		04	03	03	10	10	80	100

 Introduction to PN junction diode, Diode equation, Volt-ampere characteristics of p-n diode, , Breakdown Mechanisms (Avalanche and Zener breakdown) Diodes, Zener diode, TunnelDiode, Varactor Diode, LED, photo diode.Rectifiers Circuits:Half wave, full wave,bridge wave. Clipping and Clamping circuits. II Introduction to Bipolar Junction transistor, Transistor construction, Transistor current components, Input & Output characteristics of transistor in CB, CE, and CC configurations, Transistor biasing, Thermal runaway, Introduction to FET, JFET characteristic, biasing of FET, Comparison of BJT and FET. 	Hours
 II Introduction to Bipolar Junction transistor, Transistor construction, Transistor current components, Input & Output characteristics of transistor in CB, CE, and CC configurations, Transistor biasing, Thermal runaway, Introduction to FET, JFET characteristic, biasing of FET, Comparison of BJT and FET. III Transistor as an amplifier using Barkhausen's criterion. PC phase shift Wein bridge LC 	09
wave,bridge wave. Clipping and Clamping circuits. II Introduction to Bipolar Junction transistor, Transistor construction, Transistor current components, Input & Output characteristics of transistor in CB, CE, and CC configurations, Transistor biasing, Thermal runaway, Introduction to FET, JFET characteristic, biasing of FET, Comparison of BJT and FET. III Transister as an amplifier using Barkhausen's criterion. PC phase shift Wein bridge I C	
II Introduction to Bipolar Junction transistor, Transistor construction, Transistor current components, Input & Output characteristics of transistor in CB, CE, and CC configurations, Transistor biasing, Thermal runaway, Introduction to FET, JFET characteristic, biasing of FET, Comparison of BJT and FET.	
 components, Input & Output characteristics of transistor in CB, CE, and CC configurations, Transistor biasing, Thermal runaway, Introduction to FET, JFET characteristic, biasing of FET, Comparison of BJT and FET. 	09
 configurations, Transistor biasing, Thermal runaway, Introduction to FET, JFET characteristic, biasing of FET, Comparison of BJT and FET. III Transistor as an amplifier using Barkhausen's criterion PC phase shift Wein bridge I C 	
biasing of FET, Comparison of BJT and FET.	
III Transistor as an amplifier using Barkhausen's criterion PC phase shift Wein bridge IC	
In Transision as an amplifier using Darkhausen's Chieffoli, KC phase shift, weni bruge, LC	09
oscillators, Crystal oscillators, FET as an amplifier. Power amplifier: classification, Class A,	
Class B, Class AB and Class C Power amplifier	
IV Basic Operational Amplifier Circuits, characteristics of Op-amp, block design, virtual	09
ground, op-amp parameters, Linear and Nonlinear applications of op-amp, Instrumentation	
amplifier, Bistable ,Astable ,monostable multivibrator using transistor and OP-Amp ,555	
Timer and it's applications, Schmitt trigger circuit.	
V Nodal and Mesh analysis equilibrium equations, matrix approach for complicated network	09
containing voltage, current sources and reactance, source transformation, duality, Network	
topology.NetworkTheroms:Superposition,Reciprocity,Thevnins Therom,Nortons	
Therom, Maximum Power transfer Therom, compensation.	
Total	45

Text Book/s:

- 1. Electronic Devices & Circuits by Millman & Halkias.
- 2. Operational Amplifier & Applications by R. Gaikwad
- 3. Linear Network Theory by Kelkar & Pandit
- 4. Electrical and Electronics Measurements and Instrumentation by A.K.Sawhney

Reference Book/s:

1. Electonic Devices and circuits-I by A.P.Godse & U.A.Bakshi.

Course Code: 3BECS05 Title of the Course: Digital Circuits & Fundamentals of Microprocessor

Course Scheme					Evaluation S	cheme (Theo	ory)	
Lecture	ecture Tutorial Practical Periods/week Credits				Duration of paper, hrs	MSE	IE	ESE	Total
03	01		04	03	03	10	10	80	100

Unit	Contents	Hours
Ι	Number systems, Boolean Algebra, Basic logic circuits, truth tables, Demorgan's law, basic	09
	combinational logic circuits and design, sum of product and product of sum, simplification	
	using K-maps, SSI, MSI,LSI & VLSI circuit classification.	
II	Combinational Logic : Decoders, Encoders, Multiplexers, Demultiplexers, Code converters,	09
	Parity circuits and comparators, Arithmetic modules- Adders, Subtractions (Half and Full),	
	BCD adder/subtractor, ALU.	
III	Basic sequential circuits- latches and flip-flops: SR-flipflop, D-flipflop, JK flip-flop, T flip-	09
	flop, Timing hazards, Race around Condition, J-K Master Slave Flip flop. Excitation tables of	
	Flip Flops, Conversion of one type flip-flop to another type flips flop, Counters, types of	
	Counters, Design of Mod N counters Using K-map, Lock Free Counters, Up down Counter.	
IV	Introduction to 8085 microprocessor, architecture, instruction set, Timing diagrams, Flags,	09
	addressing modes, Assembly language programming, interrupts.	
V	Memory organization & interfacing. Interfacing I/O devices PPI 8255, 8253, and its	09
	organization & interfacing with 8085.	
	Total	45
		i i

Text Book/s:

- 1. Digital Design by Morris Mano Prentice-Hall, 2007
- Fundamental of Digital Electronics: A. Anand Kumar. 2.
- 3. Microprocessor Architecture Programming & Applications with the 8085 by Ramesh Gaonkar

- Digital Electronics 3rd Edition 2003 by R.P.Jain TATA McGraw-Hill.
 Digital circuit & design: A. P. Godse.
- 3. Microprocessor Techniques by A. P. Godse. Technical Publication.

Course Code:3BECS06Title of the Course:Advanced- C Programming

		Course Sch	Evaluatio	on Scheme (1	Laboratory)		
Lecture	Tutorial	Practical	Periods/week	Credits	TW	POE	Total
		01	02	02	25	25	50

	List of Practicals
	The student is expected to perform 10 practicals based on following topics.
Ι	Practical no. 1 & 2 should be based on the basic control structures of C-language.
II	Practical no. 3 should be based on to demonstrate the use of Storage types & Functions.
III	Practical no.4 should be based on Multidimensional Arrays.
IV	Practical no.5 should be based on handling of Strings.
V	Practical no.6 should be based on the use of Pointers.
VI	Practical no.7 should be based on the use of Structures.
VII	Practical no.8 should be based on to demonstrate Dynamic Memory Allocation
VIII	Practical no.9 & 10 should be based on File handling.

Course Code:3BECS07Title of the Course:Basic Electronics

		Course Sch	Evaluatio	on Scheme (1	Laboratory)		
Lecture	Tutorial	Practical	Periods/week	Credits	TW	POE	Total
		01	02	02	25	25	50

	List of Practicals
	The student is expected to perform 10 practicals based on following topics.
Ι	Practicals based on Diode characteristic and biasing
II	Practicals based on Transistor characteristic and its configuration
III	Practicals based on characteristics of Field Effect Transistor
IV	Practicals based on elementary circuit of Op-amp.
V	Practicals based on measurement of Operational amplifier parameter-I
VI	Practical based on measurement of Operational amplifier parameter-II
VII	Practical based on multivibrators using Op-Amp.
VIII	Practicals based on IC-555 timer and its applications.
IX	Practicals based on instrumentation amplifier.
Х	Practical based on different network theorems.

Course Code:3BECS08Title of the Course:Digital Circuits & Fundamentals of Microprocessor

		Course Sch	Evaluatio	on Scheme (1	Laboratory)		
Lecture	Tutorial	Practical	Credits	TW	POE	Total	
	01			02	25	25	50

	7
	List of Practicals
	The student is expected to perform 10 practicals based on following topics.
Ι	Practical no. 1 & 2 should be based on logic gates, de Morgan's laws.
II	Practical no. 3 should be based on Combinational circuits like Adder, Subtracter, Encoders, Decoders, Multiplexers and De-multiplexers.
III	Practical no.4 should be based Sequential Circuits like flip-flops, Counters, Registers.
IV	Practical no.5, 6, 7 should be based on instruction set of 8085 using instructions such as Arithmetic instructions and data transfer instructions.
V	Practical no. 8 should be based on the use of Stack instruction (PUSH, POP).
VI	Practical no.9, 10 should be based on Logical and Branching instructions.

Course Code:4BECS01Title of the Course:Applied Mathematics-IV

Course Scheme				Evaluation S	cheme (Theo	ry)		
Lecture	Tutorial	Practical	Periods/week	Credits	s Duration of paper, hrs MSE IE ESE 7				Total
03	01		04	04	03	10	10	80	100

Unit	Contents	Hours
Ι	Set Theory: Basic Concepts of set theory, The power set, Some operations on sets, Venn diagram, Basic set identities, Cartesian product, Properties of binary relation in a set, Matrix and the Graphs of a relation, Equivalence relation, Partial order relation, comp ability, Composition of binary relation, Function, Composition of functions, Inverse Functions, Characteristics Function of a set	09
II	Mathematical Logic: Statements Connectives: Negotiation, Conjunction, Disjunction, Conditional and biconditional, statement formulas and truth table. Tautologies, Equivalence of formulas, Duality laws, Tautological implication. Theory of inference for statement calculus, Theory of inference for Predicate calculus.	09
III	Algebraic Structures: Semigroups and Monoids, Groups (definitions and examples) Cyclic groups, Permutation groups, subgroups and Homomorphisms. Cosets and Lagranges theorem, Normal subgroups, Rings (definition and examples), subrings, Ring Homomorphisms, Ideals and Quotient Rings, Polynomial Ring, finite fields and integral domain.	09
IV	Lattice Theory & Boolean Algebra: Lattices as partial ordered set (definition and examples), some problems of lattices as algebraic system, Sub lattices, Direct Product, Homomorphism, Some special lattices, Boolean algebra (definition and examples), application to switching circuits.	09
V	Graph Theory: Basic concepts of Graph Theory, Basic definitions, Paths, Rechability and connectedness, Matrix representation of Graphs, Trees, Tree Searching, Undirected Trees, Minimal Spanning Trees.	09
	Total	45

Text Book/s:

- 1. Discrete Mathematics Structures with application to Computer Science by J.P.Trembly & R. Manohar
- 2. Discrete Maths for Computer Scientists & Mathematicians (Chapter 2,5,7) by J.L.Mott, A. Kandel, T.P.Baker
- 3. Discrete Mathematics by J.K.Sharma, Macmillan Publishers India

- 1. Elements of Discrete Mathematics by C.L.Liu., Tata McGraw-Hill, 2008.
- 2. Discrete Mathematics by Lipschutz, McGraw Hill Professional, 2007
- 3. Discrete Mathematics by R. Johnsonbaugh., 9th edition, John Wiley & Sons, 2006

Course Code:4BECS02Title of the Course:Data Structures

Course Scheme				Evaluation S	cheme (Theo	ry)		
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs MSE IE ESE Te				Total
03	01		04	03	03	10	10	80	100

Unit	Contents	Hours
Ι	Introduction to Data Structures: Basic Concepts of Data, How to Create programs. Arrays: Ordered Lists, Sparse Matrices, Quick Sort, Merge Sort, Heap Sort, selection & Bubble Sort, Linear Search, Binary Search.	09
Π	Stacks & Queues: Fundamentals, Evaluation of expressions, Polish expressions & their compilation, Application of stacks, Multiple stacks & Queues, Priority queues.	09
III	Linked Lists: Singly Linked List, Linked Stacks & Queues, the polynomial addition, Examples on linked list, circular linked list, doubly linked list & dynamic storage management, Generalized list.	09
IV	Trees: Basic Terminology, Basic trees, Binary tree representations, threaded storage representation, binary tree traversals, binary search trees, Application of trees. Preliminary treatment of AVL Trees, B-Trees, Tries.	09
V	Graphs: Definition & terminology, Graph representation : matrix representation of Graph, List of structure, other representation of graphs, Breadth First Search, Depth First Search, Spanning trees, Shortest path algorithm, topological sorting, Critical path.	09
	Total	45

Text Book/s:

- 1. Fundamentals of Data Structures by Horowitz & Sahani, Galgotia Publications, 1999
- 2. Algorithms, Data Structures & Programs by Niclaus Worth, Printice Hall ltd
- 3. Data Structures in C/C++ by Tananbaum, Tata McGraw Hill
- 4. An introduction to Data Structures with Applications by Trembley & Sonerson, Tata McGraw Hill

- 1. Data Structure & Program design in C by Kruse, Leung & Tondo, PHI
- 2. Data Structure Through C, BPB Pub.

Course Code:4BECS03Title of the Course:Database Management System

Course Scheme				Evaluation S	cheme (Theo	ory)		
Lecture	Lecture Tutorial Practical Periods/week Credits				Duration of paper, hrs	MSE	IE	ESE	Total
03	01		04	03	03	10	10	80	100

Unit	Contents	Hours
Ι	Introduction to DBMS :Basic concepts, Advantages of a DBMS over file-processing systems, Data abstraction, Data Models and data independence. Components of a DBMS and overall structure of a DBMS Database terminology Data Modeling: Basic Concepts, Types of data models, E-R data model and Object-oriented data model. Relational, Network and Hierarchical data models and their comparison. Basics of ER diagram, E-R and EER diagramming, Reducing E-R Diagrams to Tables, Generalization, and Aggregation.	09
Π	Relational Model: Basic concepts. Attributes and domains. concept of integrity and referential constraints. Relational Query Languages (Relational Algebra and relational Calculus).Concepts of View and triggers. SQL: Structure of a SQL query, DDL and DML, SQL queries, Set Operations, Predicates and Joins, Set membership, Tuple variables, set comparison, ordering of tuples, aggregate functions, nested queries, Database modification using SQL.	09
III	Relational Database Design: Normalization, normal forms, Functional Dependencies, 1NF, 2NF, 3NF, Codd's rule, Notion of a normalized relations, Multi-valued dependency and Join dependency.	09
IV	Transaction management: Basic concept of a transaction, Transaction Model, Log Based Recovery, Buffer Management, Checkpoints, Shadow Paging, Failure With Loss of non- volatile Storage, Stable Storage Implementation. Concurrency Control: Schedules, Testing of Serializability, Lock-based Protocols, Time Stamp Based Protocols, Validation Techniques, Multiple Granularity, Multiversion Schemes, Insert and Delete Operations.	09
V	Database systems Architecture: Centralized, client-server systems, Parallel systems, distributed systems, Web-enabled systems. New Applications: Need for data analysis, Decision support systems, Data Warehouse. On-line Analytical Processing(OLAP), Data mining concepts, spatial and geographical databases, multi-media Databases.	09
	Total	45

Text Books:

- 1. Database System Concepts by Henry Korth , S. Sudarsan and Others, McGraw Hill
- 2. Fundamental of Database System Elmasari , Navathe & Gupta, Pearson Education.
- 3. Database Systems by S. K. Singh, Pearson Education.

- 1. Principles of Database Systems Ullman, Golgotia Publications 1998.
- 2. Database System by Connolly, 3rd edition, Pearson Education.

Course Code:4BECS04Title of the Course:Theory of Computation

Course Scheme				Evaluation S	cheme (Theo	ory)		
Lecture Tutorial Practical Periods/week Credits			Duration of paper, hrs	MSE	IE	ESE	Total		
03	01		04	04	03	10	10	80	100

Unit	Contents	Hours										
Ι	Introduction to formal proof – Additional forms of proof – Inductive proofs –.											
	Introduction:alphabets, Strings and Language:automata and Grammars Finite Automata (FA) -											
	Deterministic Finite Automata (DFA)- Non-deterministic Finite Automata (NFA) - Finite											
	Automata with Epsilon transitions.											
II	Regular expressions(RE)-Defination,FAand RE,REtoFA,FAtoRE,algebraic laws for	09										
	RE,application of Res,Regular grammars and FA,FA for regular grammar,Regular grammar	1										
	for FA,Pumping Lemma											
III	Context-Free Grammar (CFG) - Parse Trees - Ambiguity in grammars and languages -	09										
	Definition of the Pushdown automata – Languages of a Pushdown Automata – Equivalence of											
	Pushdown automata and CFG, Deterministic Pushdown Automata.											
IV	Normal forms for CFG - Pumping Lemma for CFL - Closure Properties of CFL - Turing	09										
	Machines – Programming Techniques for TM.											
V	A language that is not Recursively Enumerable (RE) – An undecidable problem that is RE –	09										
	Undecidable problems about Turing Machine - Post's Correspondence Problem - The classes	I										
	P and NP.											
Total		45										

Text Book/s:

1. J.E.Hopcroft, R.Motwani and J.D Ullman, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2003.

- 1. H.R.Lewis and C.H.Papadimitriou, "Elements of The theory of Computation", Second Edition, Pearson Education/PHI, 2003
- 2. J.Martin, "Introduction to Languages and the Theory of Computation", Third Edition, TMH, 2003.
- 3. Micheal Sipser, "Introduction of the Theory and Computation", Thomson Brokecole, 1997.

Course Code:4BECS05Title of the Course:Object Oriented Programming

Course Scheme				Evaluation S	cheme (Theo	ry)		
Lecture Tutorial Practical Periods/week Credits			Duration of paper, hrs	MSE	IE	ESE	Total		
03	01		04	03	03	10	10	80	100

Unit	Contents	Hours
Ι	Principles of Object-Oriented Programming, Beginning with C++, Tokens, Expressions and Control Structures	09
II	Functions in C++, Function protopying, call by reference, Return by reference, Inline Function, Default Arguments, Function Overloading, Friend and Virtual Function, Classes and Objects, Defining Member Functions, Arrays within a class, Memory allocation for Objects, Arrays of Objects, Objects as Function Arguments, Friend Functions, Pointers to members	09
III	Constructors and Destructors, Parameterized constructors, Constructors with Default Arguments, Dynamic Initialization of Objects, Copy constructors, Dynamic constructors, Constructing Two-dimensional Arrays, const Objects, Operator Overloading and Type Conversions, Inheritance: Extending Classes, Types of inheritance, Virtual Base Classes, Abstract Classes, Constructors in Derived Classes, Member Classes	09
IV	Pointers, Pointers to Objects, this Pointer, Pointers to Derived Classes, Virtual Functions, Pure Virtual Functions and Polymorphism	09
V	Managing Console I/O Operations, Working with Files, Templates	09
	Total	45

Text Book/s:

- 1. Object Oriented Programming with C++ by E Balagurusamy McGraw-Hill
- 2. Let Us C++ by Y. kanetkar

- 4. C++ : The Complete reference , by Herbert Schildt , 4thedition, Tata McGraw Hill
- 5. Mastering C++ by K R Venugopal & Prasad, Tata McGray Hill

Course Code:4BECS06Title of the Course:Data Structures

Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Tutorial	Practical	Periods/week	Credits	TW	POE	Total
		01	02	02	25	25	50

Practical: Students should perform 10-12 Experiments from the given list using C.

List of Practical:

- 1. Write a Menu driven program for Stack Operation.
- 2. Implement stack as an ADT. Use this ADT to perform expression conversion and evaluation. (Infix Postfix, Infix-Prefix, Prefix-Infix, Postfix-Infix, Postfix-Infix, Postfix-Prefix).
- 3. Write a program for Circular Queue.
- 4. Write a program for Priority Queue.
- 5. Write a program for linked list.
- 6. Write a program for doubly linked list.
- 7. Write a program for Binary tree.
- 8. Write a program for BFS.
- 9. Write a program for DFS.
- 10. Write a program for Bubble Sort.
- 11. Write a program for Selection Sort.
- 12. Write a program for Heap Sort.
- 13. Write a program for Merge Sort.
- 14. Write a program for Traversal of Tree: Preorder, Inorder and Postorder.

Course Code: 4BECS07 Title of the Course: Database Management System

Course Scheme				Evaluatio	Evaluation Scheme (Laboratory)		
Lecture	Tutorial	Practical	Periods/week	Credits	TW	POE	Total
		01	02	02	25	25	50

Practical: Students should perform 10-12 Experiments from the given topics.

List of Practical's:

1. Data Definition, Table Creation, Constraints,

2. Insert, Select Commands, Update & Delete Commands.

Five experiments on PL/SQL queries.
 Nested Queries & Join Queries

4. Views

5. High level programming language extensions (Control structures, Procedures and

Functions)

6. Front end tools

7. Forms

8. Triggers

9. Menu Design

10. Reports.

Course Code:4BECS08Title of the Course:Object Oriented Programming

Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Tutorial	Practical	Periods/week	Credits	TW	POE	Total
		01	02	02	25	25	50

Practical: Students should perform 10-12 Experiments from the given list.

List of Practical:

- 1. Write a Simple C++ program without using Class & Object
- 2. Write a program using Class & Object.
- 3. Write a program using Function Overloading.
- 4. Write a program using Operator Overloading.
- 5. Write a program using Inheritance.
- 6. Write a program using Virtual Function.
- 7. Write a program using Friend Function.
- 8. Write a program using Constructor.
- 9. Write a program using Dynamic Initialization of Objects.
- 10. Write a program using Copy Constructor.
- 11. Write a program using Virtual Base Class.
- 12. Write a program using Abstract Class.
- **13.** Write a program for file handling