BACHELOR OF ENGINEERING (FOUR YEARS DEGREE COURSE) FACULTY OF SCIENCE & TECHNOLOGY TEACHING AND EXAMINATION SCHEME WITH CHOICE BASED CREDIT SYSTEM I - SEMESTER B.E.(COMMON TO ALL BRANCHES)

Course	Course Title	Те	achin	g Sche	eme	Examination Scheme										
Code		Но	ours p	er	No.			Theo	ry				Pra	ctical		
			weeĸ		OT Cred											
					its	Duratio	Max.	М	ax.	Total	Min	Max.	Max.	Total	Min.	
						n of	Mark	Ma	arks		•	Mark	Mark		Passi	
						Paper	s				Pas	s	s		ng	
						(nrs.)		Sess	ional		Ma				s	
			Ŧ	в							rks					
				P												
							ESE	MS	IE			тw	POE			
							-	E					-			
1BEAB0	Applied	4	1	0	4	3	80	10	10	100	40	-	-	-	-	
1	Mathematics –															
	1															
1BEAB0	Applied	2	1	-	2	2	40	05	05	50	20	-	-	-	-	
2	Physics – I															
1BEAB0	Applied	2	1	-	2	2	40	05	05	50	20	-	-	-	-	
3	Chemistry –I															
1BEAB0	Basic Electrical	3	1	-	4	3	80	10	10	100	40	-	-	-	-	
4	Engineering	-			-	-										
18F480	Engineering	2	1		1	3	80	10	10	100	40				_	
10LADO 5	Graphics	J	Т	_	4	5	80	10	10	100	40	-	-	_		
125120																
1BEABO 6	Communicatio	2	0	0	2	2	40	05	05	50	20	-	-	-	-	
Ŭ	II OKIII J															
1BEAB0	Applied	0	0	2	1	-	-	-	-	-	-	10	15	25	13	
7	Physics - I Lab															
1BEAB0	Applied	0	0	2	1	-	-	-	-	-	-	10	15	25	13	
8	Chemistry – I															
	Lab															
1BEAB0	Basic Electrical	0	0	3	2	-	-	-	-	-	-	25	25	50	25	
9	Engineering															

	Lab														
1BEAB1 0	Engineering Graphics Lab	0	0	3	2	-	-	-	-	-	-	25	25	50	25
			-												
		16	4	10	24	-									
			31		24	-	-			450	-	-	-	150	-
	•				<u>.</u>	600									

BACHELOR OF ENGINEERING (FOUR YEARS DEGREE COURSE) FACULTY OF SCIENCE & TECHNOLOGY TEACHING AND EXAMINATION SCHEME WITH CHOICE BASED CREDIT SYSTEM

Course	Course Title	Т	each	ing S	cheme	Examination Scheme									
Code		Ho	ours weel	per k	No. of Credits			Theo	ry				Pra	ctical	
		L	т	Ρ		Duration of Paper (Hrs.)	Max. Marks	Ma Mar Sessio	x. ks onal	Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
							ESE	MSE	IE			TW	POE		
2BEAB01	Applied Mathematics – II	4	1	0	4	3	80	10	10	100	40	-	-	-	-
2BEAB02	Applied Physics – II	2	1	-	2	2	40	05	05	50	20	-	-	-	-
2BEAB03	Applied Chemistry –II	2	1	-	2	2	40	05	05	50	20	-	-	-	-
2BEAB04	Programming in 'C'	2	1	-	3	3	80	10	10	100	40	-	-	-	-
2BEAB05	Engineering Mechanics	3	1	-	4	3	80	10	10	100	40	-	-	-	-
2BEAB06	Environmental Studies	-	-	0	-	2	-	40	10	50	20	Co	mpulsory	Audit Co	urse
2BEAB07	Applied Physics - I Lab	0	0	2	1	-	-	-	-	-	-	10	15	25	13
2BEAB08	Applied Chemistry – I Lab	0	0	2	1	-	-	-	-	-	-	10	15	25	13
2BEAB09	Programming in 'C' Lab	0	0	3	2	-	-	-	-	-	-	25	25	50	25

II - SEMESTER B.E. (COMMON TO ALL BRANCHES)

2BEAB10	Engineering Mechanics Lab	0	0	3	2	-	-	-	-	-	-	25	25	50	25
2BEAB11	Mechanical Workshop Lab	0	0	3	2							25	25	50	25
		13	4	13	23	-									
			31		23	-	-			450	-	-	-	200	-
											650				

Gondwana University CBCS 2017 Pattern for B.E.I Year w.e.f 2017-18

GONDWANA UNIVERSITY, GADCHIROLI

SYLLABUS FIRST SEMESTER BACHELOR OF ENGINEERING

(common for all branches)

Subject-Applied Mathematics-I

1BEAB01	Applied	L=4	T=1	P=0	CREDITS = 4(T)
	Mathematics-I				

Evaluation Scheme	MSE	IE	ESE	Total	ESE Duration
	10	10	80	100	3 Hrs

Course Objective

The main objective of the course is

- To equip students with adequate knowledge of mathematics that will enable them in formulating problems and solving problems analytically.
- To develop an ability to apply knowledge of mathematics, science and engineering.
- To develop the basic mathematical skills of engineering students that is essential for effective understanding of engineering subjects.
- To teach mathematical methodologies and models, to develop mathematical skill and enhance thinking and decision making power of the student.

Unit	Contents	Course objective	Hours	Marks
Ι	Differential calculus	To introduce successive	12	16
	Successive differentiation, Leibnitz's theorem on the	differentiation and its application		
	$n^{\prime\prime\prime}$ derivative of a product, Expansion of a function by	in the field of Engineering, to		
	using Taylor's and Maclaurian's theorem,	determine the limits of		
	Indeterminate forms.	indeterminate functions.		
11	Partial Differentiation -I	To introduce the concept of	12	16
	Partial Derivatives, Euler"s theorem on homogeneous	function having more than one		
	functions, Transformation of independent variables	independent variable, Euler's		
	(Chain rule) and total differential coefficient.	theorem to develops ability to		
		solve problems related to partial		
		derivatives.		

	Partial Differentiation - II Jacobians, Properties of Jacobians, Maxima and Minima of functions of two variables, Lagrange's method of undetermined multipliers	To introduce the concepts and applications of Partial Differentiation in the field of Engineering.	12	16
IV	Integral calculus Gamma and Beta functions, Properties of gamma, beta functions, Differentiation of definite integrals under integral sign, (Leibnitz's Rule), Mean and R.M.S value.	To learn the evaluation policy of some special function like gamma & Beta function & their relation to evaluate some definite integral arising in various branch of Engineering.	12	16
V	Statistics Fitting of straight line, second degree parabola & exponential curves,Coefficient of correlation, Regression lines, Rank coefficient of correlation.	To introduce the statistical methodology which is useful in various branches of Engineering.	12	16
Total			60	80

Course Outcomes:

After successful completion of this course, the student shall be able :

- 1) To identify algebraic problems from practical areas and obtain the solutions in engineering problems.
- 2) To solve engineering problems using partial differentiation and its applications.
- 3) To understand maxima and minima concept arising in optimization process.
- 4) . To evaluate integrals by using advanced techniques.
- 5) To understand the concept of statistics and use it to formulate various engineering problems.

Text Book:

1. A text book of Engineering Mathematics, Volume I and II by D.T. Deshmukh.

Reference Books:

1. A text book of Applied Mathematics Volume I and II by J.N. Wartikar and P.N. Wartikar

- 2. Higher Engineering Mathematics by Dr. B. S. Grewal
- 3. Advanced Engineering Mathematics by H. K. Dass
- 4. Advanced Engineering Mathematics by Erwins Kreyszig

Question Paper Pattern (Sub.-Applied Mathematics-I)

for B.E.I Yr. Sem. –I from 2017-18 onwards for CBCS 2017.

INSTRUCTIONSTO PAPER SETTERS: Theory Examination: MAXIMUM MARKS: 80

- 1. Duration of paper shall be **THREE**hours.
- 2. Maximum marks allotted should be EIGHTY(80).
- Question Number 1 & 2 will be based on Unit 1. Any ONE out of these TWO questions is to be solved.
- 4. Question Number 3 & 4 will be based on Unit 2. Any **ONE** out of these TWO questions to be solved.
- 5. Question Number 5 & 6 will be based on Unit 3. Any **ONE** out of these TWO questions to be solved.
- 6. Question Number 7 & 8 will be based on Unit 4. Any **ONE** out of these TWO questions to be solved.
- 7. Question Number 9 & 10 will be based on Unit 5. Any **ONE** out of these TWO questions to be solved.
- 8. Question paper will comprise of total FIVE (5) questions. All questions will carry equal marks.
- 9. Total **FIVE** questions to be solved to score maximum marks.

Syllabus for Gondwana University CBCS 2017 Pattern for B.E.I Year w.e.f 2017-18

I Semester B. E. (Common for all branches)

Subject Code: 1BEAB002

Title of the	Course: Ap	olied Physics	i-l	Evaluation Scheme (Theory)							
Course Sch	eme										
Lecture	Tutorial	Periods/	Credits	Duration of	MSE(5)	IE(5)	ESE	Total			
		week		paper, hrs							
2	1	3	2	2	CA (10)		UA (40)	50			

Course Objectives:

- 1. To introduce more engineering physics concepts, which form the basis of modern engineering.
- 2. To develop skills for numerical problem solving in areas covered.
- 3. To develop the ability to apply concepts in elementary physics to understanding of engineering applications.

Unit I Quantum Physics

Dual nature of matter, De-Broglies concept of matter waves, Davisson and Germer's experiment, Compton scattering (qualitative approach), Heisenberg's uncertainty principle and its experimental illustrations, wave packet concept, wave function interpretation, Schrodinger's wave equations, applications : Particle in infinite potential well, tunneling. **(10HRS)**

Unit II Semiconductor Physics

Formation of energy bands in solids, Classification of solids based on band theory, Energy band diagram of germanium & silicon, Probability distribution function Fermi energy-its dependence on temp and doping concentration, conductivity of solids. p-n junction diode, junction voltage equation, Hall effect-its derivation and application, transistor (10HRS)

Unit III Solid state physics

Introduction, Lattice, basis, space lattice, Unit cell, Bravais lattices, crystal system- SC,BCC & FCC, Crystal structure, Miller indices, Braggs law. Tetrahedral voids and Octahedral voids (10HRS)

Text Books:

1. Engineering Physics by Avadhanulu & Kshirsagar S. Chand Prakashan.

Reference Books:

1. Refresher Course in Physics by C.L. Arora S. Chand Publication

- 2. Fundamentals of Physics by David Halliday, Robert Resnik And Jerle Walker John Wiley & Sons 2002
- 3. Electronic Engineering Material & Devices by John Allison (TMH)
- 4. Applied Physics by P.K. Mittal, I.K. International
- 5. Applied Physics by K. C. Nandi, Tech. Max. Pune

Course Outcomes:

- 1. Develop ability to choose a physical approach to understanding of advanced areas in engineering.
- 2. Develop a better understanding of physics as a fundamental discipline
- 3. Gain an understanding of developing areas in physics and their possible Engineering Applications.
- 4. Be comfortable with fundamental ideas in areas like semiconductor, electronic devices, and quantum mechanics
- 5. Increase understanding of the type of questions addressed by theories in and methods of physics in different fields of engineering.

SCOPE OF SYLLABUS IN APPLIED PHYSICS -I

B.E.FIRST YEAR (SEM- I)

Unit I: Quantum Physics

Concept related to duality of matter waves and their properties, Debroglie wavelength of a particle & relationship to Bohrs model. Definition – Compton scattering, Compton's shift, Conservation principles(only equations) application, and failure of classical theory, direction and kinetic energy of recoil electron. Momentum-position and energy-time uncertainties, Thought expt (Electron diffraction by single slit) synthesis of a wave packet, its width and position uncertainty, and its applications, group and phase velocities, and its relation Schrodingers equation(qualitative approach) solution of Schrodinger's equation for one dimensional infinite potential well, tunneling.

Unit II: Semiconductor Physics

Fermi energy equation in intrinsic semiconductor ($E_F = E_g/2$), concept of extrinsic semiconductor. Conductivity of conductors, intrinsic & extrinsic semiconductors, drift velocity. Mechanism, current density. p-n junction diode energy band diagram- V-I characteristics, potential barrier equation, Types of transistor, its energy band diagrams, current gain definition w.r.to CB & CE configuration and their relations. application as an amplifier in CE mode. Hall effect-principle & definition, hall coeff., hall angle, and its applications.

Unit III: Solid state physics

General idea of periodic spatial arrangement of atoms and molecules, meaning of lattice and basis, Unit cell, primitive unit cell, Body and Face centering in cubic structure, simple cubic body centered cubic and face centered cubic unit cells, effective number of atoms per unit cell. Atomic radius, nearest neighbor distance, coordination number, atomic packing fraction, void space, density, crystal direction and crystal planes, Interplaner distance between adjacent planes. Braggs law equation for X-ray diffraction. Tetrahedral & Octahedral voids.

Syllabus for Gondwana University CBCS 2017 Pattern w.e.f 2017-18

APPLIED PHYSICS-I – B.E. I YEAR SEMESTER I

LABORATORY-I

Subject Code:1BEAB007

Practical: 2 hrs/week	Examination Scheme
Credit: 1	University External Practical Exam: 15 marks
	Term work (Internal Assesment) : 10 Marks.

Total Marks : 25

Duration : 2 hrs.

Course Objectives

- a. To understand and analyse the theoretical concepts in physics through experimentation
- b. To learn and use the proper methods while gathering experimental data.
- c. To get familiar with the proper use of basic instruments in physics laboratories.

Minimum SIX experiments to be performed from the list given below.

- 1. Determination of resistivity of a semiconductor by four probe method
- 2. A study of transistor characteristics in common base configuration.
- 3. A study of hall effect in semiconductors.
- 4. A study of the characteristics of a solar cell.
- 5. A study of the static characteristics of germanium and silicon diodes

and their comparison.

- 6. A study of the V-I characteristics of LED
- 7. A study of the V-I characteristics of Zener Diode.
- 8. A study of transistor characteristics in common emitter configuration.
- 9. Determination of activation energy of a thermister.
- 10. A study of cubic space lattices and atomic packing in solids.

Course Outcomes by the end of the semester

Students will be able to do experiments based on syllabus using proper methodology and derive scientific conclusion based on experiments

Question Paper Pattern (Sub.-Applied Physics-I)

for B.E.I Yr. Sem –I from 2017-18 onwards for CBCS 2017.

- 1. Duration of paper should be **TWO**hours.
- 2. Maximum marks allotted should be FORTY .
- 3. Questions are to be set from Units I,II,III for Sem -I
- 4. **TWO** questions should be set from each unit with its alternative choice.
- 5. **THREE**questions should be attempted out of **SIX** questions.
- 6. Each question carries THIRTEEN/ FOURTEEN marks.

SYLLABUS FIRST SEMESTER BACHELOR OF ENGINEERING

(common for all branches)

Subject-APPLIED CHEMISTRY - I

1BEAB003	Applied	L=2	T=1	P=2	CREDITS = 2 (T)
	Chemistry-I				1 (P)
					-(1)

Evaluation Scheme	MSE	IE	ESE	Total	ESE Duration
	05	05	40	50	2 Hrs

Rationale: A strong applied sciences program, that creates a bridge between the sciences and engineering, for first-year students, is a prerequisite for a good engineering program. This syllabus primarily focuses on the concepts needed for first year engineering students for their further technological studies. It is essential that one has to understand the fundamentals of basic sciences before trying to learn their application in various branches.

In framing the curriculum of chemistry, emphasis has been laid on the teaching of such topics, which have a bearing on the topics of various branches of engineering. With this object in view, some important fundamental topics of chemistry have been included in this syllabus.

Course Objectives:To impart intensive and extensive knowledge of the subject enriching students to understand the role and concepts of Chemistry in the field of engineering & engineering applications. To develop analytical capabilities of students in characterizing, transforming and using materials in engineering. To inculcate habit of scientific reasoning to do the task rationally

Unit	Contents	Course objective	Hour
1	Water Conditioning	Significance of quality of	10
	Industrial: Types and units of hardness; Softening;	water for industry and	
	(principle, reactions, advantage, limitation Comparison	potable water; Knowledge of	
	of) a) Lime-Soda (no methods), b) Zeolite c) de-	water analysis, boiler water	
	mineralization process; Numericals based on lime-soda	chemistry enables students	
	and zeolite process;	to overcome the difficulties,	
	Boiler Troubles (Causes, Effect on boiler operation &	in field of (i) Civil, (ii) Public	
	methods of prevention) Carry over- priming foaming;	health and environmental	
	Scale sludge, caustic embrittlement, Boiler corrosion;	engineering (iii) Ocean	
	Internal conditioning-(phosphate, carbonate, calgon).	engineering (iv) Thermal and	
	Domestic: Brief discussion and Chemistry involved in	electrical power generation	
	the process of coagulation & sterilization using UV,	sectors and process	
	ozone, chlorine, Break point chlorination. Effect and	engineering.	

	permissible BIS limit of Total hardness as CaCO ₃ , pH,		
	nitrate, fluoride, arsenic and lead in drinking water,		
П	Lubrication	To apply the knowledge of	10
	Lubricants: Introduction, mechanism; Hydrodynamic,	'Principles of Tribology' for	
	boundary & extreme pressure lubrication; Condition for	reduction of friction and	
	use of: solid (Example: Graphite), semisolid & liquid	wear in the process	
	lubricants.	engineering, manufacturing	
	Properties of greases:- Drop test & consistency test;	and production engineering	
	Properties of liquid lubricants (definition, significance)	and automotive engineering	
	flash & fire point, viscosity & viscosity index, Cloud &	fields.	
	Pour Point:		
	Criteria for selection of lubricant- IC engine,		
	refrigeration, gear, transformer, steam turbine, delicate		
	mechanical system.		
Ш	<i>Cement:</i> Portland	Impact of change in the	10
	cement: Raw material, manufacture, process	physicochemical and	
	parameters, role of microscopic constituents,	mechanical properties of the	
	Properties:-Setting & hardening; heat of hydration,	concrete type composites	
	soundness; Types (characteristics, application) High	due to variation in their	
	alumina, White, Rapid hardening, Ready Mix Concrete,	chemical composition.	
	flyash (properties, advantage, limitation, application) as		
	additive in cement.		
Total			30

Course Outcomes: After successful completion of this course, the student will able to :

- 1) Illustrate the basic parameters of water, different water softening processes and effect of hard water in industries.
- 2) Describe the basic properties and application of cement as an engineering material.
- 3) Demonstrate the mechanism, physical and chemical properties of lubricants and their applications.
- 4) social awareness about conservation and proper utilization of natural resources like water.
- 5) To develop skills for numerical problem solving in areas covered.

List of book to be referred:

Text Books:

- 1. Text Book of Engineering Chemistry, S. S. Dara, S. Chand and Company Ltd., New Delhi.
- 2. Textbook of Engineering Chemistry, P. C. Jain and Monica Jain, Dhanpat Rai and Sons, New Delhi.
- 3. Textbook of Engineering Chemistry, S. N. Narkhede, R. T. Jadhav, A. B. Bhake, A. U. Zadgaonkar, Das Ganu Prakashan, Nagpur.
- 5. Applied Chemistry, A. V. Bharati and Walekar, Tech Max Publications, Pune.
- 6. Engineering Chemistry, Arty Dixit, Dr. Kirtiwardhan Dixit, Harivansh Prakashan, Chandrapur.

Reference Books:

- 1. A Text book of Engineering Chemistry : Shashi Chawla; Dhanpat Rai & Sons, New Delhi.
- 2. Applied Chemistry by N. Krishnamurthy: P. Vallinavagam. And K. Jeysubramanian TMH
- 3. Applied Chemistry for Engineers : T.S. Gyngell.
- 4. Chemistry in Engineering : Lloyd a. Munro, Prentice-hall, IncNj
- 5. Chemistry of Advanced Materials : CNR Rao, Rsc Publication.

- 6. Chemistry of Cement, J. D. Lee, Mcgraw Hill Publishing Company, New Delhi.
- 7. Chemistry of Engineering Materials: Robert B Leighou Mc Graw Hill Book Company, Inc New York
- 8. Chemistry, Raymond Chang. (Tata McGraw Hill).
- 9. Corrosion Engineering by Mars G. Fontana and Norbert D. Green Mc Graw Hill Book Co. Tokyo
- 10. Electrochemistry, Philip H. Rieger (Chapman and Hail)
- 11. Engineering Chemistry (Vol. I and II) by Rajaram and Kuriakose.
- 12. Engineering Chemistry B.K.Sharma Krishna Prakashan media private LTD.
- 13. Engineering Chemistry by Gyngell, McGraw Hill Publishing Company, New Delhi.
- 14. Engineering chemistry by R.gopalan, and others, Vikas publications
- 15. Engineering Chemistry by R.V.Gadag, A.Nityananda Shetty ; I K International Publishing House, New Delhi
- 16. Engineering Chemistry(Vol. 1&2) by Rajaram and Kuriakose
- 17. Engineering Chemistry, B. S. Sivasankar, Tata Mcgraw Hill Publishing Company, New Delhi.
- 18. Engineering Chemistry, O. G. Palan, Tata Mcgraw Hill Publishing Company, New Delhi.
- 19. Engineering Chemistry, R. Shivakumar, Tata Mcgraw Hill Publishing Company, New Delhi.
- 20. Engineering Chemistry, Saraswat and Thakur, Vikas Publication, New Delhi.
- 21. Engineering Materials: Kenneth G Budinski (Prentice Hall of India)
- 22. Fuels and Combustion by Amir Circar, Orient Longmans
- 23. Fundamentals of Corrosion : Michael Henthorne, Chemical Engineering.
- 24. Fundamentals of Engineering Chemistry (Theory and Practice) :S. K. Singh (New Age Materials
- 25. Materials science and engineering an introduction, William D. Callister, (Jr., Wiley. publisher)
- 26. Text book of engineering chemistry, R.N. Goyal and Harrmendra Goel, (Ane books India).
- 27. Water Treatment : F. I. Bilane, Mir publisher
- 28. Water treatment for industrial and other use by Eskel Nordell, Rein hold Publishing Corporation, New York

SYLLABUS FIRST SEMESTER BACHELOR OF ENGINEERING

(common for all branches)

Subject-APPLIED CHEMISTRY – I Lab

1BEAB008	Applied	L=0	T=0	P=2	CREDITS
	Chemistry-I Lab				= 1 (P)

Evaluation Scheme	MSE	IE	ESE	Total	ESE Duration
	05	05	15	25	2 Hrs

Course Objectives

To apply the knowledge of basic science in engineering and technology and also understand the concept of applied chemistry and analyze it with experiments.

To learn the proper methods and techniques utilized in gathering experimental data. To become familiar with the proper use of some basic measuring instruments commonly found in laboratories. To learn how effectively communicate experimental results in standard scientific way.

List of practical/ experiments:

List of Experiments-Any Six experiments should be performed out of the following :

- 1. Estimation of free chlorine in the water by iodometry.
- 2. Estimation of hardness of water due to calcium and magnesium ions separately.
- 3. Estimation of temporary & permanent hardness of water by complexometry method.
- 4. Consistency and Penetration test of grease
- 5. Determination of COD in waste water.
- 6. Determination of acid Value of lubricating Oil
- 7. Determination of capacity of anion exchange resin.
- 8. Determination of capacity of cation exchange resin.
- 9. Determination of carbon residue of lubricating oil by Conradsons Apparatus.
- 10. Determination of dissolved oxygen in a water sample.
- 11. Determination of flash point of lubricating oil by Abel's apparatus closed cup.
- 12. Determination of flash point of lubricating oil by Cleveland's apparatus open cup.
- 13. Determination of flash point of lubricating oil by Pensky Martin's apparatus close cup.
- 14. Determination of Viscosity of lubricating oil at different temp by Redwood Viscometer No. 1 or No.2
- 15. Saponification number of animal/vegetable oil.
- 16. Project on water analysis

Course Outcomes: By the end of the course students should be able to carry out chemical analysis of water, assess the quality of water and to carry out the estimation of various properties on lubricating oil. Budding engineers should be able to understand and perform experiments based on syllabus adopting the proper methodology. Derive a scientific conclusion on the basis of experimental data.

Laboratory Manual:

1. Applied Chemistry theory and practical O.P. Virmani and A.K.Narular (New Age International).

- 2. Laboratory Manual on Engineering Chemistry by Dr. Subdharani (Dhanpat Rai Publishing)
- 3. A Textbook on experiment and calculation in engineering chemistry by S.S. Dara S.Chand
- 4. Inorganic quantitative analysis, Vogel. (Prentice Hall).

Course code:1BEAB04

I/II Sem B.E. (Common for all branches) Title of Course:Basic Electrical Engineering

Course Scheme					Evaluatio	n Schen	ne (Theo	ry)	
Lecture	Tutorial	Practical	Periods/wee	Credits	Duration of	MSE	IE	ESE	Total
			k		paper, hrs				
3	1	0	4	4	3	10	10	80	100

Unit	Contents	Hours
UNIT I	DC circuits: Concept of Electrical Circuit, Active & Passive elements, Voltage & Current	04
	Sources, R,L and C as Elements, Kirchoff's Law, Superposition Theorem, Star- Delta	
	Transformation.	
	AC Circuits:-Periodic Function, Average & R.M.S., Values, Steady State Behaviour With	
	Sinusoidal Excitation, Phasor Representation, Reactance & Impedance, Series & Parallel	04
	Circuit, Power Factor.	
	Principle of Generation of Single Phase & Three Phase Power, Power in Balanced Three	
	Phase AC System, Star & Delta Connections, Line & phase voltage/current relations.	04
UNIT II	Magnetic Circuit	
	Concept of Magnetic Circuit, Analogy between Electric & magnetic Circuit, magnetic	
	circuits with DC and Ac excitations, B-H Curve, Hysteresis & Eddy current losses, Series	04
	& Parallel Magnetic circuits.	
	Single Phase Transformer	
	Principle of operation & construction of Transformer, EMF Equation, Phasor Diagram	
	under no load & loaded conditions, Equivalent Circuit, O.C. & S.C. Tests, Power Losses,	05
	Efficiency & Regulation.	
UNIT III	Electrical Machines	
	Principles of Electromechanical energy conversion, Fleming's Right & Left Hand rule DC	06
	Generator: Construction, working, EMF Equation, types and applications DC Motor:	
	Construction, working , types and applications Condition for maximum	
	efficiency, Torque equation of motor, Characteristics, Applications of DC motor.	02
	Three Phase Induction Motor: Principle of Operation, types, Slip-Torque Characteristic,	05
	Applications.	
	Construction, Principle of operation & working of Single phase Induction Motor, types,	03
	Methods of Starting, Applications.	
UNITIV	Measuring Instruments	07
	Voltmeters & Ammeters, Single phase duppementer wattmeter, Digital Energy meter	03
	voltimeters & Annieters, single phase dynamometer wattmeter, Digital Energy meter.	
	Dowor Systems Elementary Idea about Dowor Constation Transmission and	
	Distribution	
	Protection & Sofety :	
	Overloads short circuits & earth leakage. Study of basic protective devices like fuse	03
	HRC Fuse. MCB. ELCB. Importance of earthing and its types: Pine & plate earthing	

	Basic issues involved in electrical hazard and electrical safety.	03
UNIT V	Basic Electronics Semiconductor Devices, PN Junction Diode, Half Wave & full wave Rectifiers, Zener Diode, Introduction to BJT & its CE characteristic, BJT as an amplifier & switch.Introduction to number systems & Logic Gates, Boolean Algebra & DeMorgon's Theorem.	08
	Total	50

Text Books:

1. V. Del Toro " Principles of Electrical Engineering", Prentice Hall

2. I.J. Nagrath " Basic Electrical Engineering", Tata McGraw Hill

3. D.F. Fitzgerald, A. Grabel Higginbotham "Basic Electrical Engineering", McGraw Hill

4. Mittal & Mittal " Basic Electrical Engineering", Tata McGraw Hill

5. B.L. Theraja and A.K. Theraja"A Text Book of Electrical Technology", Volume - I & II

6. J. Millman & Halkias " Electronic Devices & Circuits", Tata McGraw Hill

Reference Books:

1. Edward Hughes " Electrical Technology", Pearson Education

2. T.K. Naagaskar & M.S. Sukhija " Basic Electrical Engineering", Oxford University Press

3. Joseph A. Edminister " Electrical Circuits : Schaums Outline Series", Tata McGraw Hill

4. P.S. Bhimra " Electrical Machines", Khanna Publishers

5. H. Cotton "Advanced Electrical Technology", Wheeler Publications

6. R.P. Jain "Modern Digital Electronics", Tata McGraw Hill

SYLLABUS FIRST SEMESTER BACHELOR OF ENGINEERING

(common for all branches)

Subject-Basic Electrical Engineering – I Lab

Minimum Eight experiments based on theory syllabus should be conducted.

I - Semester B. E. (Common for all branches)

Course Code: 1BEAB05

Title of the Course: Engineering Graphics Theory :-

Course Scheme				Evalı	uation Sch	eme (Th	eory)		
Lecture	Tutorial	Practical	Periods/wee	Credits	Duration of	MSE	IE	ESE	Total
			k		paper, hrs				
3	1	0	4	4	3	10	10	80	100

Unit	Unit	Hours
Note: Or	ly First Angle Method of Projections Should be Used	
1	Introduction to Engineering Drawing	09
	Use of various drawing instruments, Conventions in Drawing, Lettering, BIS	
	conventions.Layout of drawing sheet, sizes of drawing sheets. Different types of	
	lines used in drawingpractice, Dimensioning. Introduction to computer aided	
	drafting package, Introduction toscales and representative factor (RF).	
	Curves used in Engineering Practice	
	Conic sections- Ellipse(excluding focus directrix method), Parabola, Hyperbola &	
	involute,Cycloid curves- only Cycloid.	
	Basics of Orthographic Projections	
	Principle of projection, orthographic projection, reference planes, concepts of four	
	quadrants, methods of orthographic projections, difference between first and third	
	angle projection, firstangle projections, conventions used to represent methods of	
	orthographic projection.	
	Projections of Points and Lines	
	Projections of points in all possible positions w. r. to reference planes, projections	
	of inteparaties to both reference planes, perpendicular to one of the reference	
	planes, inclined to one parallel to other reference plane, inclined to both	
	(evoluting applications of straight lines)	
11	Projections of Planes	09
	Projection of planes when it is parallel to one & perpendicular to other reference	05
	name lyingin reference plane inclined to one & perpendicular to other reference	
	plane, inclined to bothreference planes.	
	Auxiliary planes ± Auxiliary Inclined Plane (AIP) and Auxiliary Vertical Plane (AVP).	
	Use of Auxiliary Plane method for solving the problems.	
	Projections of Solids	
	Solids: cube, tetrahedron, prism, pyramid, cylinder and cone, projections of above	
	solids whenaxis perpendicular to one of the reference planes, axis inclined to one	
	& parallel to otherreference plane, axis inclined to both the reference planes.	

111	Sections of Solids Section planes, sectional views, to project sectional views of above solids cut by differentsection planes (when solid is in simple position, when axis is parallel to one & inclined toother reference plane). Development of Surfaces of Solids Applications of development of surfaces, methods of development, development of surfaces ofabove solids, development of surfaces of cut solids. (No reverse development)	09
IV	Orthographic Projections	09
V	Isometric Projection Isometric view and projection, Isometric scale, conventions, isometric views of lines, planefigures, simple and compound figures, construction of Isometric view/projection from givenorthographic views of blocks	09
	Total	45

Text Books:

1. N. D. Bhatt, Elementary Engineering Drawing, Charotar Publishing house, Anand, India.

- 2. D.N. Johle, Engineering Drawing, Tata Megraw-hill publishing Co. Ltd.
- 3. M. B. Shah, B. C. Rana, Engineering Drawing, Pearson.
- 4. Pakhatkar, Engg. Drawing, Nirali Prakashan.
- 5. P. J. Shah, Text Book of Engineering Drawing, S. Chand & Publications.

Reference Book.

. .

- 1. P.S. Gill Engineering Graphics.
- 2. Luzzadder Warren J. Duff John, Fundamentals of Engineering Drawing, PHI Publicatins.

. .

I - Semester B. E. (Common for all branches)

Course Code: 1BEAB10

<u>Title of the Course: Engineering Graphics Laboratory</u>

A2 (594X420mm) (Half imperial) size drawing sheets:

Sr. No.	Title Of Sheet	No.of sheets (To be Submit)
1	Engineering Curves (Minimum four problems)	01
2	Projection of Points And Lines(Minimum four problems)	01
3	Projection of Plane (Minimum four problems)	01
4	Projection of Solid(Minimum four problems)	01
5	Section of Solid(Minimum four problems)	01
6	Section of Solid and Development Of Surface(Minimum four problems)	01
7	Orthographic Projection (Minimum four problems)	01
8	Isometric View (Minimum four problems)	01

Total = 08

Text Books:

- 1. N.D. Bhatt, Elementary Engineering Drawing, Charotar Publishing house, Anand, India.
- 2. D. N. Johle, Engineering Drawing, Tata Mcgraw-hill Publishing Co. Ltd.
- 3. M.B. Shah, B.C. Rana, Engineering Drawing, Pearson.
- 4. Pakhatkar, Engg. Drawing, Nirali Prakashan.
- 5. P J. Shah, Text Book of Engineering Drawing, S Chand & Publications.
- 6. Engineering Graphics- K.R. Gopalkrishna,32nd Edition ,2005-Subhash Publishers Bangalore.

Note:During external practical examination of **25 marks**, Students are expected to solve **One/ Two**Problems on drawing sheet (or using the soft ware on the system) **ORObjective type Questions. + Oral** (15+ 10 = 25 marks). The Total duration: 60 Minutes.

Suggestion for Discussion:

All sheets are to be drawn on the system by using AUTOCAD/ SOLID WORKS

SYLLABUS FIRST SEMESTER BACHELOR OF ENGINEERING

(common for all branches)

Subject-Communication Skills

1BEAB06	Communication	L=2	T=0	P=0	CREDITS =
	Skills				2 (T)

Evaluation Scheme	MSE	IE	ESE	Total	ESE Duration
	05	05	40	50	2 Hrs

Course Objective

- A text with focus on skills approach: intended to develop the language skills of Listening, Speaking, Reading and Writing.
- To develop communication competence in prospective engineers.
- To enable them to convey thoughts and ideas with clarity and focus.

- To build confidence for communicating in English and create interest for the life long learning of English language.

- To prepare the student for campus interview.

Unit	Contents	Course objective	Hours	Marks
I	Letter Writing: Business,Job.	- To improve Writing skills.	5	8
		- To teach writing business		
		letter and resume writing		
П	Technical Report Writing.	- To develop Report Writing	5	8
		skills		
Ш	Practice Exercises on Remedial Grammar and	- To make student use correct	10	14
	Vocabulary Covering	grammar		
		- To improve Vocabulary		
	1] Sentence structure			
		- To enable them to use proper		
	2] Correction of Errors	words to express.		
	3] Transformation of Sentences			
	4] Correct Use of Confusing Words			
	5]Pairs of Words			
	6] One Word Substitute			

	7] Synonyms and Antonyms8] Prefixes and Suffixes			
IV	 Professional Communication Skills - Meaning, significance, Types, barriers Group Discussion and Personal Interview - importance of GD. How to prepare for Group Discussion (GD). Meaning, types and techniques of Personal Interview (PI). How to prepare for PI 	 To help students understand the process of Communication in link with non verbal communication The curriculum also targets the understanding of different barriers that creep into communication process To equip them to face interview and group discussion 	10	10
Total			30	40

Course Outcomes: After successful completion of this course, the student will able to:

1) Write a letter regarding business deals or be able to write an application for job describing his/her own strengths and skills.

2) Write a detailed technical report of the analysis carried out in his/her technical domain.

3) Write proper grammatically sentences. Identify the grammatical mistakes in any given note or write up. Choose proper word to express his views.

4) Participate in a group discussion activity on any subject ranging from technical domain to socio economic situations and trends with accomplished level of fluency in spoken english.

5) Develop courage and comfort in spoken English so as to converse ably in personal interview.

List of book to be referred:

Text Books:

1- Technical communication by Raman and Sharma

- 2 Developing communication skills by Krishna Mohan and Meera Banerji
- 3 High School English Grammar And Composition by wren and Martin
- 4 Professional Communication Skills by Sheikh And Bhatia

Question Paper Pattern (Sub.-Communication Skills)

for B.E.I Yr. Sem –I from 2017-18 onwards for CBCS 2017.

INSTRUCTIONSTO PAPER SETTERS: Theory Examination:MAXIMUM MARKS: 40

- 1. Duration of paper shall be **TWO**hours.
- 2. Maximum marks allotted should be FORTY (40).
- Question Number 1 & 2 will be based on Unit 1. Any ONE out of these TWO questions is to be solved.
- 4. Question Number 3 & 4 will be based on Unit 2. Any ONE out of these TWO questions to be solved.
- 5. Question Number 5 & 6 will be based on Unit 3. Any ONE out of these TWO questions to be solved.
- 6. Question Number 7 & 8 will be based on Unit 4. Any ONE out of these TWO questions to be solved.
- Question paper will comprise of total 8 questions. Question Number 1 & 2 will be of 8 marks each.
 Question Number 3 & 4 will be of 8 marks each. Question Number 5 & 6 will be of 14 marks each and Question Number 7 & 8 will be of 10 marks each.
- 8. Total **FOUR** questions to be solved to score maximum marks.

Gondwana University CBCS 2017 Pattern for B.E.I Year w.e.f 2017-18

GONDWANA UNIVERSITY, GADCHIROLI.

SYLLABUS FIRST SEMESTER BACHELOR OF ENGINEERING

(common for all branches)

Subject-Applied Mathematics-II

1BEAB01	Applied	L=4	T=1	P=0	CREDITS = 4(T)
	Mathematics-II				

Evaluation Scheme	MSE	IE	ESE	Total	ESE Duration
	10	10	80	100	3 Hrs

Course Objective

The main objective of the course is

- To equip students with adequate knowledge of mathematics that will enable them in formulating problems and solving problems analytically.

- To develop an ability to apply knowledge of mathematics, science and engineering.

- To develop the basic mathematical skills of engineering students that is essential for effective understanding of engineering subjects.

- To teach mathematical methodologies and models, to develop mathematical skill and enhance thinking and decision making power of the student.

Unit	Contents	Course objective	Hours	Marks
I	Ordinary Differential Equations- I Solution of ordinary differential equations of first order and first degree in (Linear, Exact and reducible to Linear form), solution of higher order linear differential equations with constant coefficients, and method of variation of parameters.	To gain the knowledge to solve ordinary differential equation arising in different Engineering branch.	12	16
II	Ordinary Differential Equations -II Cauchy's and Legendre's differential equations, Simultaneous differential equations, Differential equation of the form $\frac{d^2y}{dx^2} = f(y)$, Application of differential equation to electrical circuits & Kinematics (upto second order)	To develop the skills of using ordinary D.E and its application in the field of Engineering and able to form mathematical & physical interpretation of its solution which place important role in all	12	16

		branches of Engineering.		
III	Multiple Integrals and their Applications : Elementary double integral. Change of order of integration (Cartesian form), Triple Integrals, Applications of Double integrals to Area, Volume & Centre of gravity.	To develop the skills to apply Double & Triple Integration and enable them to handle integrals of higher orders.	12	16
IV	Vector calculus -I Scalars and Vectors, Velocity and Acceleration, Tangential and Normal acceleration, Gradient of scalar point function, Directional Derivatives.	To introduce the basics of vector calculus comprising of scalar, vector and gradient in the field of Engineering.	12	16
V	Vector calculus -II (Vector Integration) Vector point function, Divergence and Curl, Solenoidal and Irrotational vector fields. Scalar potential, Work done .Line, Surface and Volume Integrals. Statements & problems of Gauss Divergence , Green's , Stoke's theorem (without proof)	To introduce vector calculus and its application in the field of Engineering.	12	16
Total			60	80

Course Outcomes:

After successful completion of this course, the student shall be able :

1) To find out the solution of Differential equations of certain types and to solve higher order differential Equations.

2) To solve engineering problems using differential equations and develop mathematical models for varied engineering applications.

3) To use multiple integration for calculating mass, volume, area in various engineering problems.

4) . To calculate the gradient and directional derivatives of functions.

5) To use Green's theorem to evaluate line integrals along simple closed contours on the plane, Stoke's theorem to give a physical interpretation of the curl of a vector field and the Divergence theorem to give a physical interpretation of the divergence of a vector field.

Text Book:

2. A text book of Engineering Mathematics, Volume I and II by D.T. Deshmukh.

Reference Books:

1. A text book of Applied Mathematics Volume I and II by J.N. Wartikar and P.N. Wartikar

2. Higher Engineering Mathematics by Dr. B. S. Grewal

3. Advanced Engineering Mathematics by H. K. Dass

4. Advanced Engineering Mathematics by Erwins Kreyszig

Question Paper Pattern (Sub.-Applied Mathematics-II)

for B.E.I Yr. Sem –II from 2017-18 onwards for CBCS 2017.

INSTRUCTIONSTO PAPER SETTERS: Theory Examination: MAXIMUM MARKS: 80

- 1. Duration of paper shall be **THREE**hours.
- 2. Maximum marks allotted should be EIGHTY(80).
- Question Number 1 & 2 will be based on Unit 1. Any ONE out of these TWO questions is to be solved.
- 4. Question Number 3 & 4 will be based on Unit 2. Any **ONE** out of these TWO questions to be solved.
- 5. Question Number 5 & 6 will be based on Unit 3. Any **ONE** out of these TWO questions to be solved.
- 6. Question Number 7 & 8 will be based on Unit 4. Any **ONE** out of these TWO questions to be solved.
- 7. Question Number 9 & 10 will be based on Unit 5. Any **ONE** out of these TWO questions to be solved.
- 8. Question paper will comprise of total **FIVE (5)** questions. All questions will carry equal marks.
- 9. Total **FIVE** questions to be solved to score maximum marks.

Syllabus for Gondwana University CBCS 2017 Pattern for B.E.I Year w.e.f 2017-18 II Semester B. E. (Common for all branches)

Subject Code: 2BEAB002

Title of the Course: Applied Physics-II			Evaluation Scheme (Theory)						
Course Sc	heme								
Lecture	Tutorial	Periods/	Credits	Duration	of	MSE(5)	IE(5)	ESE	Total
		week		paper, hrs					
2	1	3	2	2		CA (10)		UA(40)	50

Course Objectives:

- 1. To introduce more engineering physics concepts, which form the basis of modern engineering.
- 2. To develop skills for numerical problem solving in areas covered.
- 3. To develop the ability to apply concepts in elementary physics to understanding of engineering applications.
- 4. To elaborate the general nature of concepts learnt and of possibility of their cross-disciplinary application;
- 5. To provide a sound foundation in mathematical formulation of concepts learnt and their applications

Unit IV Wave optics

Interference due to thin films of uniform and non uniform thickness, Newtons ring, Antireflection coating applications, Polarization, types of polarization, linear, circular and elliptical polarizations. Polarization by reflection, polarization by scattering, optics axis, ordinary and extra ordinary waves, positive and negative crystals. Double refraction in quartz prism, polarizer, analyzer. Malu's law, quarter and half wave plates. (10HRS)

Unit V Electron Ballistics

Motion of electron in uniform electric and magnetic fields, Concept of crossed fields, Electron refraction, electric and magnetic focusing devices-CRT, CRO and its applications, Bainbridge Mass spectrograph. **(10HRS)**

Unit VI Lasers and Fibre Optics

Introduction, Principle of laser, laser characteristics, Spatial and temporal coherence of light waves,types of laser, and its application. Introduction to optical fibre structure, principle, modes of propogation, acceptance angle, Numerical aperture, fractional refractive index, types and classifications of optical fibre, V – number, attenuation & it's different mechanisms, distortion, applications as sensors and detectors advantages of optical fibre in communication.(10HRS)

Text Books:

1. Engineering Physics by Avadhanulu & Kshirsagar S. Chand Prakashan.

Reference Books:

1. Concept of modern Physics by A. Beiser TMH Edition

- 2. Concept of modern Physics by S. L. Gupta &S. Gupta
- 3. Optics by Ajay Ghatak
- 4. Lasers and Non Linear Optics by B.B. Laud, New Age Publications
- 5. Lasers Theory & Application by Avadhanulu, S. Chand and Company

Course Outcomes:

- 1. Develop ability to choose a physical approach to understanding of advanced areas in engineering
- 2. Develop a better understanding of physics as a fundamental discipline
- 3. Gain an understanding of developing areas in physics and their possible engineering applications
- 4. Be comfortable with fundamental ideas in areas like semiconductor, electronic devices, and quantum mechanics.
- 5. Increase understanding of the type of questions addressed by theories in and methods of physics in different fields of Engineering.
- 6. Develop a deeper appreciation of the notion of applying knowledge of physical laws

SCOPE OF SYLLABUS IN APPLIED PHYSICS-II

Unit IV : Wave Optics.

Concept of thin film, path difference for maxima & minima, its derivation for uniform thickness. application of wedge shape film as surface testing & thickness or diameter of wire/foil. equation for fringe width, Newton's ring and its applications,

Polarization: Linear, circular, elliptical polarizations, polarization by reflection, polarization by scattering, Optic axis, ordinary and extraordinary waves, positive & negative crystals, Double refraction in quartz prism, polarizer and analyzer, Malus law, quarter and half wave plates.

Unit V : Electron Ballestics

Application of electric and magnetic fields along parallel, perpendicular and inclined direction, concept of Lorentz force, Non uniform electric and magnetic field, Bethes law, electrostatic & magnetostatic lenses, CRO- block diagram and functions of various parts, concept of velocity selector. mass isotope and derivation of linear separation.

Unit VI : Laser and fibre optics

Interaction of radiation with matter(energy concept approach), Absorption, spontaneous and stimulated emission, components as pumping, population inversion, metastable state three and four level laser system, resonant cavity, lasing medium, coherence time, coherence length, types- Ruby, He-Ne and Semiconductor. Propogation of light through an optical fibre, critical angle of propogation, acceptance cone, classification of optical fibre based an refractive index profile, modes of light propogation and materials, Different mechanism of attenuation i,e intrinsic losses and extrinsic losses, different dispersion mechanism, intramodel dispersion, intermodel dispersion, Sensors- temperature sensor, displacement sensor, force sensor, detectors- liquid level detector, pollution detector.

Syllabus for Gondwana University CBCS 2017 Pattern w.e.f 2017-18 APPLIED PHYSICS-II – B.E. I YEAR SEMESTER II

LABORATORY-II

Subject code: 2BEAB007

Practical: 2 hrs/week	Examination Scheme
Credit: 1	University External Practical Exam: 15 marks
	Internal Assessment: 10 Marks.
	Total Marks : 25
	Duration : 2 hrs.

Course Objectives

- a. To understand and analyse the theoretical concepts in physics through experimentation.
- b. To learn and use the proper methods while gathering experimental data.
- c. To get familiar with the proper use of basic instruments in physics laboratories.

Minimum SIX experiments to be performed from the list given below.

- 1. Determination of the radius of curvature of a plano-convex lens using Newton's rings.
- 2. Determination of thickness of a thin foil using air wedge.
- 3. Cathode ray oscilloscope applications (Frequency & Phase)
- 4. Determination of wavelength of Laser light using planetransmission grating.
- 5. To measure the divergence of laser beam.
- 6. Determination of numerical aperture and acceptance angle, attenuationin optical fibre.
- 7. e/m by Thomson's method.
- 8. Determination of R.I of prism.
- 9. Determination of R.I. of liquid using Newton's Ring.
- 10. Determination of R.I. of Ordinary and Extra-Ordinary Rays.

Course Outcomes by the end of the semester

Students will be able to do experiments based on syllabus using proper methodology and derive scientific conclusion based on experiments

Question Paper Pattern (Sub.-Applied Physics-II)

for B.E.I Yr. Sem –II from 2017-18 onwards for CBCS 2017.

- 1. Duration of paper should be **TWO**hours.
- 2. Maximum marks allotted should be FORTY .
- 3. Questions are to be set from UNITS IV,V, VI for SEM-II.
- 4. **TWO** questions should be set from each unit with its alternative choice.
- 5. **THREE**questions should be attempted out of **SIX** questions.
- 6. Each question carry **THIRTEEN/FOURTEEN** marks.

SYLLABUS SECOND SEMESTER BACHELOR OF ENGINEERING

(common for all branches)

Subject-APPLIED CHEMISTRY - II

2BEAB003	Applied	L=2	T=1	P=2	CREDITS = 2 (T)
	Chemistry-II				1 (P)

Evaluation Scheme	MSE	IE	ESE	Total	ESE Duration
	05	05	40	50	2 Hrs

Rationale:Applied Chemistry deals with industrial applications, engineering & technologies which are related with the basic need of an individual, society & environment so the students should be aware of the basic fundamental as well as relevant up-dates. Chemistry is considered as one of the core subjects for students in engineering and technology for developing in them scientific temper and appreciation of chemical properties of materials, which they have to handle in their professional career.

Course Objectives: Applied Chemistry includes the study of a large number of diverse topics all related to things in the world around us. It aims to give an understanding of this world both by observation and prediction of the way in which objects will behave. Concrete uses of principles and analysis in various fields are given prominence in course content. Effort should be made to teach this subject through demonstration and with active involvement of students.

Unit	Contents	Course objective	Hour
IV	Fuels and Energy	Application of	10
	Calorific value, HCV & LCV; Determination C.V.by Bomb & Boy's	knowledge of	
	calorimeter; Dulong's formula & numericals for calculation of	conventional sources	
	Gross & Net C.V. Analysis of coal - significance of (i) Proximate	of energy used in	
	Analysis &(ii) Ultimate Analysis.	thermal, electrical,	
		nuclear power,	
	Liquid and Gaseous fuels:- Bubble tower fractional distillation of	generations;	
	crude oil (boiling point wise separation with diagram &	significance of quality	
	composition table); Knocking in IC & Compression engine; Octane	of fuel for industry;	
	& Cetane number, Doping agents (Anti-knocking, Anti oxidants)	social awareness	
	Fisher-Tropsch process of manufacture of synthetic gasoline;	about conservation	
	catalytic cracking (Only Principal, Definition, reactions, catalysts	and proper utilization	
	used, Advantage. Method of fixed bed & fluid bed not required).	of natural resource	

	Comparison of CNG & Diesel.	fuel and use of cleaner									
		technology.									
V	Corrosion.	Knowledge for proper	10								
	Introduction : Cause and Consequences of corrosion Factors	selection and design									
	influencing the rate of corrosion : a) Nature of metal, position in	of engineering									
	galvanic series, potential difference, relative area of the anodic	materials having									
	and cathodic parts, purity of metal, nature of the corrosion	better corrosion									
	product, b) Nature of environment, temperature, moisture,	resistance and to									
	influence of pH, concentrations of electrolytes.	implement effective									
		measures to minimize									
	Types of Corrosion : (I) Dry or Chemical Corrosion (i) Due to oxygen	corrosion.									
	(ii) due to other gases. Pilling-Bedworth rule (II) Wet or										
	Electrochemical Corrosion: Mechanism (i) Evolution of hydrogen										
	type (ii) Absorption of oxygen. Types of Electro-Chemical Corrosion										
	- Galvanic cell corrosion, Concentration cell corrosion. Differential										
	aeration theory of corrosion, pitting corrosion, Intergranular										
	corrosion, Stress Corrosion, Waterline Corrosion.										
	Methods to Decrease the rate of Corrosion :- a)Design & material										
	selection using pure metal, using metal alloys, b) Cathodic										
	protection - (i) Sacrificial anodic protection, (ii) Impressed current										
	method, c) Anodic protection method, d) protective surface										
	coating-(only principle No Method)- tinning, galvanizing & powder										
VI	ADVANCED CHEMISTRY AND COMBUSTION CALCULATIONS	fascinating	10								
		developments in CNT,									
	Green Chemistry: Introduction, Twelve principles of Green	green chemistry &									
	Chemistry, concept of carbon credits.	battery technology									
	Properties and uses of Carbon Nano Tubes (CNTs).	which has opened									
	Battery: -Nickel-cadmium, Alkaline Fuel Cell.	engineering field									
	Compustion: calculations for given solid liquid & gaseous fuels	applications of									
		engineering materials									
Total			30								

Course Outcomes: After successful completion of this course, the student will able to :

1) Illustrate the type of corrosion and its mechanism which will help to develop the corrosion control methods.

2) Classify the various types of fuel and their analysis by bomb calorimeter and other techniques.

3) Have basic knowledge of clean technologies green chemistry.

4) Develop numerical problem solving skills in areas covered..

List of book to be referred:

Text Books:

1. Text Book of Engineering Chemistry, S. S. Dara, S. Chand and Company Ltd., New Delhi.

2. Textbook of Engineering Chemistry, P. C. Jain and Monica Jain, Dhanpat Rai and Sons, New Delhi.

3. Textbook of Engineering Chemistry, S. N. Narkhede, R. T. Jadhav, A. B. Bhake, A. U. Zadgaonkar, Das Ganu Prakashan, Nagpur.

5. Applied Chemistry, A. V. Bharati and Walekar, Tech Max Publications, Pune.

6. Engineering Chemistry, Arty Dixit, Dr. Kirtiwardhan Dixit, Harivansh Prakashan, Chandrapur. Reference Books:

- 1. A Text book of Engineering Chemistry : Shashi Chawla; Dhanpat Rai & Sons, New Delhi.
- 2. Applied Chemistry by N. Krishnamurthy: P. Vallinavagam. And K. Jeysubramanian TMH
- 3. Applied Chemistry for Engineers : T.S. Gyngell.
- 4. Chemistry in Engineering : Lloyd a. Munro, Prentice-hall, IncNj
- 5. Chemistry of Advanced Materials : CNR Rao, Rsc Publication.
- 6. Chemistry of Cement, J. D. Lee, Mcgraw Hill Publishing Company, New Delhi.
- Chemistry of Engineering Materials: Robert B Leighou Mc Graw Hill Book Company, Inc New York
- 8. Chemistry, Raymond Chang. (Tata McGraw Hill).
- 9. Corrosion Engineering by Mars G. Fontana and Norbert D. Green Mc Graw Hill Book Co. Tokyo
- 10. Electrochemistry, Philip H. Rieger (Chapman and Hail)
- 11. Engineering Chemistry (Vol. I and II) by Rajaram and Kuriakose.
- 12. Engineering Chemistry B.K.Sharma Krishna Prakashan media private LTD.
- 13. Engineering Chemistry by Gyngell, McGraw Hill Publishing Company, New Delhi.
- 14. Engineering chemistry by R.gopalan, and others, Vikas publications
- 15. Engineering Chemistry by R.V.Gadag, A.Nityananda Shetty ; I K International Publishing House, New Delhi
- 16. Engineering Chemistry(Vol. 1&2) by Rajaram and Kuriakose
- 17. Engineering Chemistry, B. S. Sivasankar, Tata Mcgraw Hill Publishing Company, New Delhi.
- 18. Engineering Chemistry, O. G. Palan, Tata Mcgraw Hill Publishing Company, New Delhi.
- 19. Engineering Chemistry, R. Shivakumar, Tata Mcgraw Hill Publishing Company, New Delhi.
- 20. Engineering Chemistry, Saraswat and Thakur, Vikas Publication, New Delhi.
- 21. Engineering Materials: Kenneth G Budinski (Prentice Hall of India)
- 22. Fuels and Combustion by Amir Circar, Orient Longmans
- 23. Fundamentals of Corrosion : Michael Henthorne, Chemical Engineering.
- 24. Fundamentals of Engineering Chemistry (Theory and Practice) :S. K. Singh (New Age Materials
- 25. Materials science and engineering an introduction, William D. Callister, (Jr., Wiley.publisher)
- 26. Text book of engineering chemistry, R.N. Goyal and Harrmendra Goel, (Ane books India).
- 27. Water Treatment : F. I. Bilane, Mir publisher
- 28. Water treatment for industrial and other use by Eskel Nordell, Rein hold Publishing Corporation, New York

SYLLABUS SECOND SEMESTER BACHELOR OF ENGINEERING

(common for all branches)

Subject-APPLIED CHEMISTRY – II Lab

2BEAB008	Applied	L=0	T=0	P=2	CREDITS = 1	
	Chemistry-II Lab				(P)	

Evaluation Scheme	MSE	IE	ESE	Total	ESE Duration
	05	05	15	25	2 Hrs

Course Objectives

To apply the knowledge of basic science in engineering and technology and also understand the concept of applied chemistry and analyze it with experiments.

To learn the proper methods and techniques utilized in gathering experimental data. To become familiar with the proper use of some basic measuring instruments commonly found in laboratories. To learn how effectively communicate experimental results in standard scientific way.

List of practical/ experiments:

List of Experiments - Any Six experiments should be performed out of the following:

- 1. Estimation of NaOH and Na₂CO₃ Type and extent of alkalinity by Warders method.
- 2. Estimation of NaHCO₃ and Na₂CO₃ Type and extent of alkalinity by Warders method.
- 3. Estimation of Copper by lodometry.
- 4. Estimation of the amount of ferrous and ferric ions present in the given solution or from ore.
- 5. Estimation of the amount of Ni⁺² ions in a given solution by complexometric method.
- 6. Estimation of percentage of iron in plain carbon steel.
- 7. Determination of moisture content of coal.
- 8. Determination of volatile matter content of coal.
- 9. Determination of ash content of coal.
- 10. Determination of calorific value of a solid fuel using Bomb Calorimeter.
- 11. Determination of pH.
- 12. Determination of conductivity.
- 13. Determination of rate of corrosion by weight loss by corrossometer.
- 14. Estimation of calcium in limestone by volumetric method.
- 15. Project on fuel analysis.

Course Outcomes: By the end of the course students should be able to carry out chemical analysis of water, assess the quality of water and to carry out the estimation of various properties on lubricating oil. Budding engineers should be able to understand and perform experiments based on syllabus adopting the proper methodology. Derive a scientific conclusion on the basis of experimental data.

Laboratory Manual:

- 1. Applied Chemistry theory and practical O.P. Virmani and A.K.Narular (New Age International).
- 2. Laboratory Manual on Engineering Chemistry by Dr. Subdharani (Dhanpat Rai Publishing)
- 3. A Textbook on experiment and calculation in engineering chemistry by S.S. Dara S.Chand

4. Inorganic quantitative analysis, Vogel. (Prentice Hall).

Question Paper Pattern (Sub.-Applied Chemistry-I &II)

for B.E.I Yr. Sem –I& II from 2016 -17 onwards for CBCS 2016.

INSTRUCTIONS TO PAPER SETTERS: Theory Examination: MAXIMUM MARKS: 40

- 1. Duration of paper should be **Two** hours.
- 2. Maximum marks allotted should be FORTY (40).
- Question paper will comprise of total 6 questions, FOUR of thirteen (13) marks and TWO of fourteen (14)marks
- 4. Total THREE questions need to be solved.
- 5. Questions are to be set from Units I,II,III for Sem .I
- 6. Questions are to be set from Units IV, V, VI. for Sem .II
- 7. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. ie (qu. 1 or qu. 2. Qu. 3 or qu. 4, Qu. 5 or qu. 6).

C Programming

Unit	Contents	Hours
1	What is C, History of C, Applications of C language, Structure of C Program, Execution of C Program, Advantage of Header File, Variables and Keywords :Character Set, Identifier, Variable, Keywords, Constants :Real Constant, Integer Constant, Character Constant, String Constant, Tokens in C, Programming Examples	6
2	Data types : Integer Data type, floating point data type, Derived data types, Enum, Typedef, Operators : Assignment Operator, Arithmetic Operators, Logical Operators, Relational Operators, Shorthand Operators, Unary, perators, Conditional / Ternary Operator, Biwise Operators, Operator, Precedence and Associativity, Control Statements : If Statement, If-Else Statement, Nested If-Else, Switch Case, Programming Examples	5
3	Loop: while, do while, for loop, Break Statement, Continue Statement, Functions : Function call by passing value, Function call by , returning value, Function call by passing and returning value, Recursion, Programming Examples	7
4	Storage Classes :Automatic Storage Class (auto), Register Storage Class (register), Static Storage Class (static), External Storage Class (extern), Array :Array, Single / One Dimensional Array, Two Dimensional Array, Structure : Array in Structures, Structure with Array, Difference between array and structure	7
5	Strings: Creating variable to store String, Handling Strings, strcpy, strcat, strlen, strcmp, strchr, strstr, command line argument, Programming Examples	5

BACHELOR OF ENGINEERING (FOUR YEARS DEGREE COURSE

IN FACULTY OF SCIENCE AND ENGINEERING

II - SEMESTER B.E.(COMMON TO ALL BRANCHES) with CBCS Scheme

Code	Subject	Te Sc	ach hen	ing ne			Examination Scheme									
		Hours per week			Hours No. per of week Cred		No. of Cred	Theory					Practical			
		L	т	Ρ		Durati on of Paper (Hrs.)	Max Mar ks	Max. Marks Session al		Tot al	ot Min. Passi ng Mark s	Max Ma Mar Ma ks ks	Max Mar ks	Tot al	Min. Passi ng Mark s	
							ESE	MS	I			TW	POE			
								E	E							
2BEAB 005	Enginee ring Mechani cs	3	1	-	4	3	80	10	1 0	100	40	-	-	-	-	
2BEAB 010	Enginee ring Mechani cs Lab	0	0	3	2	-	-	-	-	-	-	25	25	50	25	

Subject: Engineering Mechanics (2BEAB005) Theory

Unit	Contents	Hrs						
1	Basic Concepts: System of forces, Moment of forces and its Applications, Couples and	09						
	Resultant of Force System.							
	Equivalent Force System : Resultant of a 2 dimensional distributed loads and three							
	dimensional general force system							
	Equations of Equilibrium: Free body diagrams, Types of Supports, Equations of							
	equilibrium, coplanar concurrent and non-concurrent systems, general spatial force							
	system, Support reactions for determinate beams with different types of load –							
	concentrated, uniformly distributed and uniformly varying load.							
2	Analysis of perfect frames and simple trusses: Analysis of pin jointed simple and	09						
	cantilever frames and trusses by method of joints, method of section and Graphical							
	methods.							
	Friction: Coulomb's laws of dry friction, problem involving Dry Friction, simple							
	application like wedges, belt friction and band brakes.							
	Simple Machine – Differential wheel and axle, single and double purchase Crab, it's							
	Velocity Ratio, Mechanical advantage, efficiency, ideal machine etc.							
3	Centroid and Moments of Inertia: Centroid location by first principle, centroid of	09						
	composite areas, Second Moment and products of inertia of plane areas, Transfer							
	theorems for moment of inertia and Product of inertia, Maximum and Minimum							
	moment of inertia, Mohr's circle.							
	Virtual work: Principles, theorem, Principle of Virtual work applied to equilibrium of							
	Mechanisms, simple beam, Pin jointed frames.							
4	Kinematics and Kinetics of Particles: Rectilinear motion of a particle with variable	09						
	acceleration, Motion curves, Projectile motion, normal and tangential components of							
	acceleration, kinetics of particle and several interconnected particles.							
5	Collision of elastic bodies: Principle of conservation of momentum, Impulse	09						
	momentum equation, work energy equation, coefficient of restitution, impact of							
	elastic bodies. D'Alemberts Principles, problems on connected system of particles.							
Total		45						

Textbook and Reference Books:

- 1. Engineering Mechanics Statics and Dynamics: Ferdinand L. Singer, Harper International edition
- 2. Engineering Mechanics: S. Timoshenko & D H Young, McGraw-Hill Book Company, Inc., New York.
- 3. Engineering Mechanics: Bear and Johnston, Tata McGraw hill.
- 4. Engineering Mechanics: I. H. Shames, Prentice Hall
- 5. Engineering Mechanics, Schaum Series.

Subject: Engineering Mechanics Lab (2BEAB10)

List of Experiments:

Note: A student has to perform any 8 experiments out of the following list.

- 1. To determine the reactions at the supports of a simply supported beam.
- 2. To determine MA, VR and efficiency of a double purchase crab and to verify law of machine.
- 3. To determine the M.A., V.R. and efficiency of the differential wheel axle and to verify law of machine.
- 4. To determine the forces in the members jib and tie of the jib crane apparatus.
- 5. To determine the coefficient of coil friction.
- 6. To determine the coefficient of friction between two surfaces by inclined plane.
- 7. To determine the moment of inertia of flywheel.
- 8. Verification of Newton's second law of motion by Fletcher's Trolley.

9. To determine the reactions at the supports of a given beam by graphical method.

10. To determine the reactions at the supports and the forces in members of a given truss by graphical method.

II Semester B. E. (Common for all branches) Course Code: 2BEAB11 Title of the Course:Mechanical Workshop Lab

Sr. No.	Title Of Shop	No.of Jobs (To Submit)
1	Fitting Shop (Square fitting and V-fitting or other models)	02
2	Carpentry (Cross lap joint and Dovetail joint or other models)	02
3	Smithy(Flat Chisel and S-Hook or other models)	02
4	Welding (Corner joint and T-fillet joint or other models)	02

Total = 08

Text / Reference Books:

- 1. Elements of Workshop Technology (Volume 1) by Hajra Choudhary
- 2. Workshop Manual by P.Kannaiah