I - SEMESTER B.E. (COMMON TO ALL BRANCHES)

Subject Code	Subject	Т	'each	ing Scl	heme					Examina	tion Scher	ne			
		Hour	s per	week	No. of			Theo	ry				Pra	ctical	
		L	т	Ρ	Credits	Duration of Paper (Hrs.)	Max. Marks	Max. I	Marks	Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
								Sessi	onal						
							ESE	MSE	IE			тw	POE	-	
1BEAB01	Applied Mathematics – I	3	1	0	4	3	80	10	10	100	40	-	-	-	-
1BEAB02	Applied Physics – I	2	0	-	2	2	40	05	05	50	20	-	-	-	-
1BEAB03	Applied Chemistry –I	2	0	-	2	2	40	05	05	50	20	-	-	-	-
1BEAB04	Basic Electrical Engineering	3	1	-	4	3	80	10	10	100	40	-	-	-	-
1BEAB05	Engineering Graphics	3	1	-	4	3	80	10	10	100	40	-	-	-	-
1BEAB06	Indian Constitution, Ethics and Human Rights	1	0	0	1	2	-	40	10	50	20		AUDIT	SUBJECT	
			l	I				1							
1BEAB07	Applied Physics - I Lab	0	0	3/2	1	-	-	-	-	-	-	10	15	25	12
1BEAB08	Applied Chemistry – I Lab	0	0	3/2	1	-	-	-	-	-	-	10	15	25	12
1BEAB09	Basic Electrical Engineering Lab	0	0	3	2	-	-	-	-	-	-	25	25	50	25
1BEAB10	Engineering Graphics Lab	0	0	3	2	-	-	-	-	-	-	25	25	50	25
		14	3	09	23	-									
			29		23	-	-			450	-	-	-	150	-
											600				

II - SEMESTER B.E. (COMMON TO ALL BRANCHES)

Subject Code	Subject	1	'each	ing Sc	heme					Examina	tion Scher	ne			
		Hour	s per	week	No. of			Theo	ry				Pra	ctical	
		L	Т	Р	Credits	Duration	Max.	Max. I	Marks	Total	Min.	Max.	Max.	Total	Min.
						of Paper (Hrs.)	Marks				Passing Marks	Marks	Marks		Passing Marks
								Sessi	onal						
							ESE	MSE	IE			тw	POE	-	
2BEAB01	Applied Mathematics – II	3	1	0	4	3	80	10	10	100	40	-	-	-	-
2BEAB02	Applied Physics – II	2	0	-	2	2	40	05	05	50	20	-	-	-	-
2BEAB03	Applied Chemistry –II	2	0	-	2	2	40	05	05	50	20	-	-	-	-
2BEAB04	Programming in 'C'	2	1	-	3	3	80	10	10	100	40	-	-	-	-
2BEAB05	Engineering Mechanics	3	1	-	4	3	80	10	10	100	40	-	-	-	-
2BEAB06	Environmental Studies	1	0	0	1	2	-	40	10	50	20		AUDIT	SUBJECT	
	1	- 1	0	1	Г <u> </u>	1	T	1	1		I	r	r	T	
2BEAB07	Applied Physics - I Lab	0	0	3/2	1	-	-	-	-	-	-	10	15	25	12
2BEAB08	Applied Chemistry – I Lab	0	0	3/2	1	-	-	-	-	-	-	10	15	25	12
2BEAB09	Programming in 'C' Lab	0	0	3	2	-	-	-	-	-	-	25	25	50	25
2BEAB10	Engineering Mechanics Lab	0	0	3	2	-	-	-	-	-	-	25	25	50	25
2BEAB11	Mechanical Workshop Lab	0	0	3	2							25	25	50	25
	1	- 1	0	1	Г <u> </u>	1	T	1	1		I	r	r	T	
		13	3	12	24	-									<u> </u>
			28		24	-	-			450	-	-	-	200	-
											650				

III - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject	Т	eachi	ng Scl	heme				E	xamina	tion Scher	ne			
Code		Hour	s per	week	No. of			Theo	ſy				Prac	tical	
		L	т	Р	Credits	Duration of Paper (Hrs.)	Max. Marks	Max. Max. Max. Max. Max. Max. Max. Max.		Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
							ESE	MSE	IE			тw	POE		
3BEEE01	Applied Mathematics – III	3	0	0	3	3	80	10	10	100	40	-	-	-	-
3BEEE02	Network Analysis	3	1	-	4	3	80	10	10	100	40	-	-	-	-
3BEEE03	C & Data Structures	3	0	-	3	3	80	10	10	100	40	-	-	-	-
3BEEE04	Electronic Devices & Circuits	3	0	-	3	3	80	10	10	100	40	-	-	-	-
3BEEE05	Power Generation Systems	3	0	0	3	3	80	10	10	100	40				
												-	-	-	-
					Laborat	ories/ Pract	ical								
3BEEE06	Network Analysis	I	-	2	1	-	I	-	I	-	-	25	25	50	25
3BEEE07	C & Data Structures	-	-	2	1	-	-	-	-	-	-	25	25	50	25
3BEEE08	Electronic Devices & Circuits	-	-	2	1	-	-	-	-	-	-	25	25	50	25
	TOTAL	15	01	06	19		5	00					15	50	
			21		19					e	650				

IV - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject	Т	eachi	ng Scl	neme				E	xamina	tion Scher	ne			
Code		Hour	s per	week	No. of			Theor	'y				Prac	tical	
		L	т	Р	Credits	Duration of Paper	Max. Marks	Max. N	/ arks	Total	Min. Passing	Max. Marks	Max. Marks	Total	Min. Passing
						(Hrs.)		Sessi	onal		Marks				Marks
							ESE	MSE	IE			тw	POE		
4BEEE01	Electrical Engineering Mathematics	3	0	0	3	3	80	10	10	100	40	-	-	-	-
4BEEE02	Electrical Machines – I	3	1	-	4	3	80	10	10	100	40	-	-	-	-
4BEEE03	Signals & Systems	3	0	0	3	3	80	10	10	100	40				
4BEEE04	Electrical Measurements & Instrumentation	3	0	-	3	3	80	10	10	100	40	-	-	-	-
4BEEE05	Electro Magnetic Fields	3	0	0	3	3	80	10	10	100	40	-	-	-	-
					Laborat	ories/ Pract	tical								
4BEEE06	Electrical Machines – I	-	-	2	1		-	-	-	_	_	25	25	50	25
4BEEE07	Simulation In Electrical Circuits	-	-	2	1	-	-	_	-	_	_	25	25	50	25
4BEEE08	Electrical Measurements & Instrumentation	-	-	2	1	-	-	-	-	-	-	25	25	50	25
	TOTAL	15	01	06	19	-		500)	•	-		15	50	
			22		19	-					650)			

V - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject	٦	「eachi	ing Scl	heme				E	xamina	tion Scher	ne			
Code		Hour	s per	week	No. of			Theo	ry				Prac	tical	
		L	Т	Р	Credits	Duration of Paper (Hrs.)	Max. Marks	Max. Max. Max. Max. Max. Max. Max. Max.		Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
							ESE	MSE	IE			TW	POE	-	
5BEEE01	Electrical Machines – II	3	1	-	4	3	80	10	10	100	40	-	-	-	-
5BEEE02	Microprocessors & Microcontroller	3	0	-	3	3	80	10	10	100	40	-	-	-	-
5BEEE03	Analog & Digital Circuits	3	0	-	3	3	80	10	10	100	40	-	-	-	-
5BEEE04	Electrical Power System – I	3	0	0	3	3	80	10	10	100	40	-	-	-	-
5BEEE05	IDCS - I	3	0	0	3	3	80	10	10	100	40				
5BEEE06	Industrial Economics & Management	3	0	0	3	3	80	10	10	100	40	-	-	-	-
					Laborat	ories/ Pract	tical								
5BEEE07	Electrical Machines – II	-	-	2	1	-	-	-	-	-	-	25	25	50	25
5BEEE08	Microprocessors & Microcontroller	-	-	2	1	-	-	-	-	-	-	25	25	50	25
5BEEE09	Analog & Digital Circuits	-	-	2	1	-	-	-	-	-	-	25	25	50	25
	TOTAL	.18	01	06	22			600)				15	50	
			25		25						750				

IDCS – I : 1) Power Station Practice 2) Optimization Technique

Note: Students will have to opt for Inter Disciplinary Cluster Subject (IDCS) offered from the other courses of the University/College/Institution.

VI - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject	٦	eachi	ng Scl	neme				E	xamina	tion Scher	ne			
Code		Hour	s per	week	No. of			Theor	'Y				Prac	tical	
		L	т	Р	Credits	Duration of Paper	Max. Marks	Max. N	/ arks	Total	Min. Passing	Max. Marks	Max. Marks	Total	Min. Passing
						(Hrs.)		Sessi	onal		Marks				Marks
							ESE	MSE	IE			тw	POE		
6BEEE01	High Voltage Engineering	4	0	-	4	3	80	10	10	100	40	-	-	-	-
6BEEE02	Control Systems - I	3	1	-	4	3	80	10	10	100	40	-	-	-	-
6BEEE03	Electrical Power System – II	4	0	0	4	3	80	10	10	100	40	-	-	-	-
6BEEE04	Design of Electrical Machines	3	0	0	3	3	80	10	10	100	40	-	-	-	-
6BEEE05	IDCS - II	3	0	0	3	3	80	10	10	100	40				
6BEEE06	Business Communication	-	3	0	-					AUDIT	COURSE *				
					Laborat	ories/ Pract	tical								
6BEEE07	High Voltage Engineering	-	-	2	1	-	-	-	-	-	-	25	25	50	25
6BEEE08	Control Systems - I	-	-	2	1	-	-	-	-	-	-	25	25	50	25
6BEEE09	Minor Project & Seminar *	-	-	2	1	-	-	-	-	-	-	25	25	50	25
	TOTAL	.17	04	06	21			500)				15	50	
			27		21						650)			

IDCS – II: 1) Energy Audit and Management 2) Electrical Installation and Costing

Note: Students will have to opt for Inter Disciplinary Cluster Subject (IDCS) offered from the other courses of the University/College/Institution.

*The marks allotted for TW shall be granted on the basis of work carried out by the candidate in pursuing the Minor Project, its results & the Seminar delivered on the same topic. However, the POE marks shall be granted on the basis of viva voce, conducted as per University norms. Each GROUP of Minor Project shall comprise of NOT MORE THAN THREE students.

VII - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject		Teacl	ning S	cheme					Examin	ation Sche	eme			
Code		Hour	s per	week	No. of			The	ory				Prac	tical	
		L	Т	Ρ	Credits	Duratio n of Paper	Max. Marks	Max. Max. Max. Max. Max. Max. Max. Max.		Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
						(Hrs.)		36331	Ullai		Warks				Marks
							ESE	MSE	IE			TW	POE		
7BEEE01	Power Electronics	3	0	-	3	3	80	10	10	100	40	-	-	-	-
7BEEE02	Power System Protection & Switchgear	3	0	-	3	3	80	10	10	100	40	-	-	-	-
7BEEE03	Electrical Energy Utilization	3	0	0	3	3	80	10	10	100	40	-	-	-	-
7BEEE04	Control Systems - II	3	1	0	4	3	80	10	10	100	40	-	-	-	-
7BEEE05	Core Elective – I (CE – I)	4	0	0	4	3	80	10	10	100	40	-	-	-	-
					Laborator	ies/ Pract	ical								
7BEEE06	Power Electronics	-	-	2	1	-	-	-	-	-	-	25	25	50	25
7BEEE07	Switchgear & Protection	-	-	2	1	-	-	-	-	-	-	25	25	50	25
7BEEE08	Major Project Seminar	-	-	2	1	-	-	-	-	-	-	25	-	25	13
	TOTAL	16	01	06	20			500)				12	25	
			23		20						625	5			

Core Elective – I :

(1) EHV AC-DC Transmission

(2) Artificial Intelligence

(3) Modeling of Electrical System

(4) Programmable Logic & Sequential Systems

VIII - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject	Г	eachi	ng Scl	heme				E	xamina	tion Scher	ne			
Code		Hour	s per	week	No. of			Theor	ſy				Prac	tical	
		L	т	Р	Credits	Duration of Paper (Hrs.)	Max. Marks	Max. N Sessi		Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
							ESE	MSE	IE			TW	POE		
8BEEE01	Advanced Electrical Drives	3	1	0	4	3	80	10	10	100	40	-	-	-	-
8BEEE02	FACTS	3	0	0	3	3	80	10	10	100	40				
8BEEE03	Core Elective – II (CE – II)	4	0	0	4	3	80	10	10	100	40	-	-	-	-
8BEEE04	Open Elective(OE)	2	0	0	2	3	80	10	10	100	40				
					Laborat	ories/ Pract	ical								
8BEEE05	Computer Applications in Power system	-	-	2	1	-	-	-	-	-	-	25	25	50	25
8BEEE06	Major Project	-	-	6	6	-	-	-	-	-	-	75	75	150	75
8BEEE07	Industrial Training **	-	-	1	1	-	-	-	-	-	-	25	-	25	13
	TOTAL	.12	01	9	21			400)				22	25	
			22		21						625	•			

Core Elective – II (CE – II): (1) Power System Operations & Control (2) Electrical Installation & Design (3) Power Quality 4) Computer Methods in Power System

Open Elective (OE):

(1)_____

(2)_____ (3)_____

**Industrial Training : Every student shall undergo relevant Industrial Training of TWO WEEKS and shall submit a comprehensive report, signed by the Competent Authority from the concerned Industry. This Training may be taken up by the students preferably at the end of VI – Semester of their Course. One separate period (as practical) is allotted to facilitate proper assessment of industrial training by the staff.

FACULTY OF ENGINEERING & TECHNOLOGY

CONSOLIDATED STATEMENT OF VARIOUS PARAMETERS IN TEACHING & EXAMINATION SCHEME OF B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

SR.NO.	SEMEST ER	NO. OF THEORY SUBJECTS	NO. OF LABS/ PRACT	TEACHING HOURS (TH) (L+T)	TEACHING HOURS (PRACT)	TOTAL CREDITS	MAX. THEORY MARKS	MAX. PRACT MARKS	MAX. MARKS TOTAL
1	Ι	06	04+01*	14+3	09	23	450	150	600
2	П	06	05+1*	13+3	12	24	450	200	650
3	III	05	03	15+1	06	19	500	150	650
4	IV	05	03	15+1	06	19	500	150	650
5	V	06	03	18+1	06	22	600	150	750
6	VI	05+01*	03	17+4	06	21	500	150	650
7	VII	05	03	16+1	06	20	500	125	625
8	VIII	04	02+ind. tr.	12+1	9	21	400	225	625
		43	26+02* +IND. TR	120 +15	60	169	3900	1300	5200

*Audit course : No University examination shall be conducted for AUDIT COURSE. However, based on Internal Evaluation, the Candidate's performance shall be graded in three categories i.e. A,B and C, which will be reflected in their Memo of Marks to be given by the University.

SUBJECT WISE BOARD OF STUDIES AFFILIATION

BOARD OF STUDIES	SUBJECT CODES
APPLIED SCIENCES & HUMANITIES	3BEEE01, 4BEEE01
COMPUTER	3BEEE03, 3BEEE07
ELECTRONICS	3BEEE04, 3BEEE08, 4BEEE03, 5BEEE02, 5BEEE03, 5BEEE08, 5BEEE09
MECHANICAL	5BEEE06
ELECTRICAL	REST ALL, EXCEPT ABOVE ENLISTED

.....

Gondwana University CBCS Pattern 2017 w.e.f 2018-III Semester B.E. (Electrical Engineering)

Course Code: 3BEEE01

Title of the Course: APPLIED MATHEMATICS - III

Course Sc	heme				Evaluation Scheme	(Theory)			
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0	4	4	3	10	10	80	100

Unit	Contents	Hours
Ι	Laplace Transform	
	Definition, Properties (statements only). Periodic functions and unit step function, InverseLaplace transform bypartial fractions and convolutiontheorem. Solution of ordinary lineardifferential equations with constantcoefficients byLaplacetransform	09
II	Matrices	
	Inverse of matrix by adjoint and partitioning method, Rank of a matrix and consistency of systemof linear simultaneous equations , Linear dependence ,Linearand orthogonal transformation ,Eigen values and eigen vectors, Reduction to diagonal form	09
III	Matrices	
	Cayley-Hamilton Theorem, Sylvester ^{**} s Theorem (statements only) Solution of second order linear differential equation with constant coefficient by matrix method. Largest eign value and corresponding eign vector by iteration	09
IV	Partial Differential Equations	
	Linear Partial Differential Equations -first order & first degree i.e. Lagrange's form, Linear homogeneous equations of higher order with constant coefficients ,Method of separation of variables.	09
V	Fourier series and Fourier Transforms	
	Periodic functions and their Fourier series expansion, Fourier Series for even and oddfunctions, Change of interval, Half range expansions,Fourier integrals and Fourier Transforms.	09

A TEXT BOOKS:

- 1. Higher Engineering Mathematics -B.S.Grewal, Khanna Publications
- 2. Probability and Statistics by Murray R Spiegel 3/e Schaum's Outline Series

3. Higher Engineering Mathematics By H.K.Dass S.Chand

Reference Book:

A Text Book of Engineering Mathematics by N.P. Bali and Manish Goyal Laxmi Publications

III Semester B.E. Electrical Engineering, With Choice Based Credit System

Course code: 3BEEE02

Title of Course: Network Analysis

	Course Scheme					Scheme E	valuatio	n Schem	e (Theory)
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of	MSE	IE	ESE	Total
					paper, hrs				
03	1	02	06	05	3	10	10	80	100

Unit	Contents	Hours
UNIT I	Nodal and Mesh analysis of networks, source transformation, mutual inductances in mesh and nodal analysis, Duality.NIT INetworkTheorems(Applicationstoacnetworks):Superpositiontheorem,Thevenin's theorem,Norton'stheorem,Maximumpowertransfertheorem,Reciprocitytheorem, Millman'stheorem,Compensationtheorem,Tellegen'stheorem.NIT IIFourier series, Evaluation of Fourier coefficients, waveform symmetries as related to Fourier coefficients, Exponential form of Fourier series, steady state response to periodic signals, Fourier integral and transform. Graph theory: Graph of a network, tree, co-tree, basic loop and basic cut set, incidence matrix, cut set matrix, Tie-set matrix.Definition of Laplace transform, properties of Laplace transforms, Laplace transform theorems, inverse Laplace transform, Laplace transforms. Transient behavior, initial conditions, concept of complex frequency, driving points and transfer functions, Poles and zeros of network functions, restrictions on Pole and Zero locations for driving point functions, restrictions on Pole and Zero locations for driving point functions, short circuit admittance parameters, open circuit impedance parameters, transmission parameters, hybrid parameters, relationships between parameter sets, parallel connection of two port networks. Three phase unbalanced circuits and power calculations.	9
UNIT II	theorem, Norton's theorem, Maximum power transfer theorem, Reciprocity theorem,	9
UNIT III	Fourier coefficients, Exponential form of Fourier series, steady state response to periodic signals, Fourier integral and transform. Graph theory: Graph of a network, tree, co-tree,	9
UNIT IV	theorems, inverse Laplace transform, Laplace transform of periodic functions, Convolution integral, Partial fractions, applications of Laplace transforms. Transient behavior, initial conditions, concept of complex frequency, driving points and transfer functions, Poles and zeros of network functions, restrictions on Pole and Zero locations for driving point functions, restrictions on Pole and Zero locations for transfer	9
UNIT V	Relationship of two-port variables, short circuit admittance parameters, open circuit impedance parameters, transmission parameters, hybrid parameters, relationships between parameter sets, parallel connection of two port networks. Three phase unbalanced circuits	9
	Total	45

Course Outcome:

At the end of the course, students will demonstrate the ability to

- 1. Make use of mesh and nodal analysis to solve the network.
- 2. Apply network theorems to solve ac network.
- 3. Solve network problems using graph theory.
- 4. Examine behavior of the network using Laplace transformation.
- 5. Determine different parameters of two port networks and their relationship.

Text/Reference Books

- (1) Network analysis by M.E. Van Valkenburg, Prentice Hallof India Pvt. Ltd.
- (2) LinearnetworktheorybyKelkarandPandit,Pratibhapublication,Nagpur.
- (3) ngineeringNetworkanalysisandfilterdesignbyGopalBhise,PremChaddha,D.Kulshreshtha,Umeshpublication,Delhi.
- (4) Circuittheorybya.Chakrabarti,DhanpatRaiandco.
- (5) CircuitandNetworksbyA.Sudhakar,Shyammohan,TataMcGrawHill.

III Semester B.E. Electrical Engineering, With Choice Based Credit System

Course code: 3BEEE03 Title of Course: C & Data Structures

	Course Scheme				Evaluation Scheme (Theory)				
Lecture	Tutorial	Practical	Periods/week	Credits	Credits Duration of paper, hrs MSE IE ESE			ESE	Total
03	01		04	03	03	10	10	80	100

Unit	Contents	Hours
Ι	Introduction to C Programming Variables, Datatypes, Declarations, Operators, Expressions, Decision Making the While, The For, The Do While Loops, Nesting of loops, Switch, Defining & Using Functions, Parameter	09
	passing, Recursion, Pass by value, Pass by Reference, Storage Classes.	
II	Introduction to Data Structure Arrays, Matrix Manipulation ,Searching & Sorting Algorithms, Quick Sort, Merge Sort, Heap Sort, selection & Bubble Sort, Linear Search, Binary Search.	09
III	Structures & Pointers Using structures, arrays of structures, Pointers for structure, pointer to pointer Linked Lists: Singly Linked List, Examples on linked list, circular linked list, doubly linked list & dynamic storage management.	09
IV	Stacks & Queues Stacks & Queues using array, Fundamentals, Evaluation of expressions, Polish expressions & their compilation, Application of stacks, Multiple stacks & Queues, Priority queues, Circular Queue	09
V	Trees Basic Terminology, Basic trees, Binary tree representations, binary tree traversals, binary search trees, Application of trees. Graphs Definition & terminology, Graph representation : matrix representation of Graph, List of structure, other representation of graphs, Breadth First Search, Depth First Search, Hash Tables.	09
	Total	45

Text Book/s:

- 1. Fundamentals of Data Structures by Horowitz & Sahani, Galgotia Publications, 1999
- 2. Algorithms, Data Structures & Programs by Niclaus Worth, Printice Hall ltd
- 3. Data Structures in C/C++ by Tananbaum, Tata McGraw Hill
- 4. An introduction to Data Structures with Applications by Trembley & Sonerson, Tata McGraw Hill

Reference Book/s :-

- 1. Data Structure & Program design in C by Kruse, Leung & Tondo, PHI
- 2. Data Structure Through C, BPB Pub.

III Semester B.E. Electrical Engineering, With Choice Based Credit System

Course Code	: 3BEEE04
Title of the Course	: ELECTRONIC DEVICES AND CIRCUITS
Course Outcomes:	

- 1. To understand the physical construction, working and operational characteristics of Semiconductor devices.
- 2. To understand the working of transistors, its various configuration and their applications.
- 3. Able to design simple circuits containing non-linear elements such as transistors using the concepts of load lines and operating points.
- 4. To analyze the basic principle, operation and applications of JFET and MOSFET
- 5. To analyze various parameters of power amplifier.

	C	ourse Schen	ne		Evaluation Scheme (Theory)				
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0	4	4	3	10	10	80	100

Unit	Contents	Hours
Ι	P-N Junction Diode and its applications	
	Theory of P-N Junction, P-N Junction as a Diode, Diode Equation, Volt-ampere Characteristics, Temperature dependence of diode VI characteristic, Ideal versus Practical ,static and dynamic resistance of a diode, Transition and Diffusion Capacitances, Diode Equivalent Circuits, Load Line Analysis, Breakdown Mechanisms in Semiconductor Diodes. Principle of Operation and Characteristics of Zener Diode and Voltage Regulation using Zener Diode. The P-N junction as a Rectifier, Half wave Rectifier, Full wave Rectifier, Bridge Rectifier. Filters: filters: capacitive filter, inductive filter, L-C & C-L-C Filters.	
II	Bipolar Junction Transistor	
	Transistor Construction, BJT Operation, Transistor Current Components Transistor as switch, Common Base, Common Emitter and Common Collector Configurations and its input, output characteristics. BJT Specifications, Transistor as an Amplifier, analytical expression (Ebers-moll model) for transistor characteristics The Transistor at Low Frequencies: Two-port Devices and the Hybrid model, Transistor Hybrid model, Analysis of a transistor amplifier circuit using h parameters, Millers Theorem and its dual, cascading transistor amplifiers	14
III	Transistor Biasing and Stabilization	
	Operating Point, The DC and AC Load lines, Need for Biasing, Fixed Bias, Collector Feedback Bias, Emitter Feedback Bias, Collector - Emitter Feedback Bias, Voltage Divider Bias, Bias Stability, Stabilization Factors, Stabilization against variations in VBE and β , Bias Compensation using Diodes and Transistors, Thermal Runaway, Thermal Stability The Transistor at High Frequencies: The hybrid-pi (π) Common Emitter transistor Model, hybrid- π Conductances and Capacitances	
IV	Field Effect Transistor	
	Junction Field Effect Transistor Construction and principle of operation, JFET characteristics, JFET Small Signal Model, MOSFET Construction and principle of operation, MOSFET Characteristics in Enhancement and Depletion modes.FET Biasing, FET Amplifiers: FET Common Source Amplifier, Common Drain Amplifier,FET as Voltage Variable Resistor.	12
V	Power Amplifiers	<u> </u>

Introduction, difference between voltage amplifier and power amplifier, classification of power amplifiers, overall and collector efficiency of power amplifiers, Transformer coupled class A amplifier, Push pull class B amplifier, complementary symmetry class B amplifier, cross over distortion.

12

Text Books:

- 1. Integrated Electronics Millman & Halkias, Tata McGraw Hill Company.
- 2. Electronic Devices and Circuits by Millman Halkias (2 nd edition, McGraw Hill Publications)
- 3. Electronic Devices and Circuit Theory by Robert L. Boylestad (PHI Publications)

Reference Books:

- 1. Electronic Devices and Circuit by Allen Motorshed Eastern Economy Edition
- 2. Electronic Devices and Circuits by David A. Bell (PHI Publications)

III Semester B.E. Electrical Engineering, With Choice Based Credit System

Course code: 3BEEE05

Title of Course: Power Generation Systems

	Course Scheme				Course Scheme Evaluation Scheme (Theory)				
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of	MSE	IE	ESE	Total
					paper, hrs				
03	-		03	03	3	10	10	80	100

Unit	Contents	Hours
UNIT I	Coal, oil and natural gas, water, power, nuclear fission & fusion, their scopes and Potentialities for energy conversion. Power Generation Different factors connected with a generating stations, connected load, maximum demand , demand factor, load factor, diversity factor, plant capacity and utilization factor, load curve, load duration curve, load survey, base load and peak load station , advantages of interconnection	9
UNIT II	Thermal Power Plant Selection of site, working of various parts: Economizer, air pre-heater, condenser, cooling tower, coal handling system, ash handling system., cost of generation. Effect of different factors on cost	9
UNIT III	Hydro Power Plant Hydrology, stream flow, flow duration curve, power duration curve, mass curve reservoir capacity, types of hydro plants and their field of use, Pumped storages plant & their utility, surge tanks, governing characteristics of turbine and hydro generators.	9
UNIT IV	Nuclear Station Principle of nuclear energy, materials, types of nuclear reactors, breeder reactors, location, material for moderator and control rods, cost economics Tariff Different consideration of flat rate and two part, three part, and block rate tariff. Economical choice.	9
UNIT V	Non-conventional Sources of energy Solar Energy : Introduction, principle & applications, Photovoltaic Cell, A basic photovoltaic system integrated with grid, use of photovoltaic system, solar energy storage. Solar electric power generation Wind Energy: Introduction, Principle & Applications, Wind Energy conversion, basic components of wind electric system, wind electrical generation. Biogas Plants and Applications, , Biomass Plants and applications	9
	Total	45

Course Outcome:

At the end of the course, students will demonstrate the ability to

- 1. Understand the various sources of energy and various factors associated with the power generation
- 2. Understand the working of Thermal, Hydro and Nuclear Power plant
- **3.** Estimate the tariff
- 4. Understand the generation of Electricity from Non-conventional Energy Sources.

Text/Reference Books

- 1. Elements of Electrical Power Station Design by M.V. Deshpande
- 2. Electrical Power Stations by Car
- 3. Electrical Power Station Control by H.P. Young
- 4. Non-conventional Energy sources by G.D. Rai
- 5. Energy conservation and Power Generation by L.D. Agrawal and G.K. Mittal

Gondwana University CBCS Pattern 2017 w.e.f 2018-19 IV Semester B.E. (Electrical Engineering)

Course Code: 4BEEE01

Title of the Course: ELECTRICAL ENGINEERING MATHEMATICS

Course Se	Course Scheme					Evaluation Scheme (Theory)				
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total	
3	1	0	4	4	3	10	10	80	100	

Unit	Contents	Hours
Ι	Z- Transform	
	Definition and propertie, Inverse Z-transform by partial fractions and convolution theorem. Application to solve difference equation with constant coefficients.	09
II	Complex Variables	
	Analytic functions Cauchy Riemann conditions, Conjugate functions, Singularities, Cauchy''s Integral theorem and Cauchy''s Integral Formula (statements only) Laurent''s Theorem (statement only) Residue Theorem and application of residuals to evaluate Real integral of the form $\int_{0}^{2\pi} f(sin\theta, cos\theta) d\theta$ and $\int_{-\infty}^{\infty} \frac{f(x)}{F(x)} dx$ where F(x) has no zeros on real axis.	09
III	Numerical Methods	
	Solution of algebraic and transcendental equations by False position method, Newton-Raphson method. Non linear simultaneous equations by Newton-Raphson Method. Solution of system of simultaneous linear equations by Gauss Jordan method, Gauss Seidel method, Crouts method	09
IV	Numerical Methods	
	Solution of ordinary first order first degree differential equation by Taylor's series method, Runge-Kutta 4th order method, Euler's modified method, Milne's Predictor Corrector method.	09
V	Random Variables, and Probability Distribution	
	Random variables Distribution functions of discrete and continuous random variables, Joint distributions, Mathematical Expectations, Moments, Moments generating function and Characteristic function. Coefficient of skewness and Kurtosis	09

Text Books

- 1. Higher Engineering Mathematics By B.S.Grewal Khanna Publications
- 2. Probability and Statistics by Murray R Spiegel Schaums outline Series
- 3. Higher Engineering Mathematics By H.K.Dass S Chand Publications

Reference Book:

A Text Book of Engineering Mathematics by N.P. Bali and Manish Goyal Laxmi Publications

IV Semester B.E. Electrical Engineering, With Choice Based Credit System

Course code: 4BEEE02

Title of Course: Electrical Machines -I

	Course Scheme				Course S	Scheme E	valuatio	n Schem	e (Theory)
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of	MSE	IE	ESE	Total
					paper, hrs				
03	01	02	06	05	3	10	10	80	100

Unit	Contents	Hours
UNIT I	Review of single phase transformer, Three phase Transformer operation and principle, OC. & SC. test on three phase transformer, determination of equivalent circuit parameters, Regulation, Efficiency, Polarity test,	09
UNIT II	Various connections with vector groups, Three phase to two phase conversion. Parallel operation of three phase transformer, Auto-transformer, Sumpner's Test	09
UNIT III	Construction, Basic principle and operation, emf generated, Types according to methods of excitation, Commutation and armature reaction, Compensating winding, Inter-poles, Characteristics, applications	09
UNIT IV	Construction, principle, Comparison of motor and generator action, Back EMF, torque equation, Types according to methods of excitation, characteristics, applications, Starting and speed control of dc shunt and series motor, Constant horse power & constant torque drive of D.C. Motor.	09
UNIT V	Types of induction motor and production of torque. Torque-slip characteristics. No load blocked rotor test, equivalent circuit & determination of equivalent circuit parameters. Circle diagram, losses, efficiency, double cage motor, operating characteristics & influence of machine parameter on the performance of motor.	09
	Total	45

Course Outcome:

CO-1 Identify different parts of single phase and 3 phase transformers.

CO-2 Explain the principle of operation of single and three phase transformers.

CO-3 Illustrate the principles of generation of force and EMF governing the Electromechanical Energy conversion.

CO-4 Select d.c. machine for specific applications

Text Books:

1) Electric Machines, By I.J.Nagrath and D.P.Kothari, Tata McGraw Hill

- 2) Electrical machinery by Dr.P. S. Bimbhra, Khanna Publisher
- 3) Performance & Design Of AC Machines By M.G Ray, CBS Publishers & Distributors
- 4) Electric Machines by Ashfaq Husain, Dhanpat Rai and Co.
- 5) Electric Machinery by A.E. Fitzgerald, C.Kingsley Jr and Umans, McGraw Hill

Reference Books:

- 1) Theory and Performance of Electrical Machine by J. B. Gupta, S.K.Katariya and Sons
- 2) Electrical Machines by P.K.Mukharjee and S.Chakraborty, Dhanpat Rai Publication

IV Semester B.E. Electrical Engineering, With Choice Based Credit System

Course Code Title of the Course : 4BEEE03

Title of the	e Course	: SIGN	ALS AND S	SYSTEMS						
	C	ourse Schen	ne		Evaluation Scheme (Theory)					
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total	
3	1	0	4	4	3	10	10	80	100	

COURSE OBJECTIVES:

The aim of the course is for:

- 1. Understanding the fundamental characteristics of signals and systems.
- 2. Understanding signals and systems in terms of both the time and transform domains, taking advantage of the complementary insights and tools that these different perspectives provide.
- 3. Development of the mathematical skills to solve problems involving convolution, filtering and modulation.

Unit	Contents	Hours
Ι	INTRODUCTION TO SIGNALS AND SYSTEMS	
	Introduction, Continuous Time and Discrete Time signals, Elementary Signals: Unit Impulse, Unit Step, Ramp, Rectangular, Triangular, Signum, Sinc, Exponential and Sinusoidal, Transformation of Independent Variable: Time Shifting, Time Scaling and Time Reversal, Classification of Signals: Periodic and Aperiodic, Even and Odd, Energy and Power, Causal and Non causal. Systems: Definition, Classification: Linear and Non Linear, Time Variant and Invariant, Causal and Non-causal, Static and Dynamic, Stable and Unstable, Invertible and Non Invertible, Incrementally linear Systems.	10
II	LINEAR TIME INVARIANT SYSTEMS	
	Discrete-Time LTI Systems: The Convolution Sum, Continuous-Time LTI Systems: The Convolution Integral, Properties of Linear Time-Invariant Systems: Invertibility, Causality, Stability, Unit step response of an LTI System, Causal LTI Systems Described by Differential and Difference Equations.	9
III	FOURIER SERIES REPRESENTATION OF PERIODIC SIGNALS	
	The Response of LTI Systems to Complex Exponentials, Fourier Series Representation of Continuous- Time Periodic Signals, Convergence of the Fourier Series, Properties of Continuous-Time Fourier Series, Fourier Series Representation of Discrete-Time Periodic Signal, Properties of Discrete-Time Fourier Series, Fourier Series and LTI Systems.	9
IV	FOURIER TRANSFORM	
	Representation of Aperiodic Signals: The Continuous-Time Fourier Transform, The Fourier Transform for Periodic Signals, Properties of the Continuous-Time Fourier Transform, The Discrete-Time Fourier Transform (DTFT), DTFT of Discrete Periodic Signals, Properties of the DTFT.	9
V	THE LAPLACE TRANSFORM	
	The Laplace Transform, The Region of Convergence for Laplace Transforms, The Inverse Laplace Transform, Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot, Properties of the Laplace Transform, Laplace Transform Pairs, Analysis and Characterization of LTI Systems Using the Laplace Transform, The Unilateral Laplace Transform.	8

TEXT BOOKS:

- 1. "Signals and Systems" by Alan V. Oppenheim, Alan S. Wilsky and S. Hamid Nawab, Publication: Prentice Hall of India.
- 2. "Signals and Systems" by P. Ramesh Babu, R. Ananda Natarajan, SciTech Publications (India).

REFERENCE BOOKS:

- 1. "Signals and Linear Systems" by Gabel R.A. and Robert R.A, John Wiley and Sons, New York.
- 2. "Systems and Signal Analysis" by C. T. Chen Publication: Oxford University Press, India.
- 3. "Introduction to Signals and Systems" by Michael J. Robert, Publication: Tata Mc-Graw Hill.
- 4. "Signals and Systems" by S. Haykin and B. V. Veen, Publications: John Wiley and Sons, Inc.
- 5. "Signals and Systems Analysis using, Transform Methods and MATLAB" by M. J. Roberts Tata McGraw-Hill Publishing Company Limited.

IV Semester B.E. Electrical Engineering, With Choice Based Credit System

Course code: 4BEEE04

Title of Course: Electrical Measurement and Instrumentation

Course Scheme					Course Scheme Evaluation Scheme (Theory)				
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of	MSE	IE	ESE	Total
					paper, hrs				
03		02	05	04	3	10	10	80	100

Unit	Contents	Hours
	MEASURING INSTRUMENTS	
UNIT I	Classification, deflecting, controlling, damping torques. Basic principles of operation of Ammeter & Voltmeter, PMMC, Moving Iron, and Electrodynamometer type instruments. Principle of operation, Torque Equation, Errors, merits & demerits of each type. Analog & Digital instruments. Advantages of digital instruments. Absolute & secondary Instruments. , Indicating & Recording type instruments. Shunt & Multiplier	9
	GENERALIZED INSTRUMENTATION SYSTEM General block diagram of instrumentation system, Active and passive transducers. Strain	
UNIT II	Gauges, Resistive, Inductive & Capacitive Transducers. Transducers for measurement of Displacement, Velocity, Force, & Torque. Static and dynamic characteristics and performances of instruments. Statistical treatment of measurement errors. Gaussian error distribution, probability tables, combination of errors	9
	MEASUREMENT OF POWER & ENERGY	
	Measurement of active & reactive power in single & three phase circuits, using	
UNIT III	dynamometer type instruments. Errors in Power Measurement.	9
	Measurement of Energy in single & three phase circuits using indication type instruments. Errors in energy measurements. Maximum Demand Indicator.	
UNIT IV	MEASUREMENT OF CIRCUIT PARAMETERS Measurement of low resistance by Kelvin's Double bridge. Measurement of Medium Resistance by Wheatstone Bridge. Measurement of high resistance by loss of charge method. Earth Resistance Tester. Measurement of Inductance & Capacitance: General theory of AC bridges, study of Maxwell, De sauty's & Schering bridges, detectors of AC bridges.	9
	MISCELLANEOUS MEASUREMENTS	
UNIT V	Temperature Measurement: Laws of thermo-electric circuits, thermocouples, thermistors, optical pyrometers, temperature compensation of temperature sensors. Pressure measurement: Manometer, Bellows, Bourdon tube, Diaphragms. Power factor & Frequency Measurement. General Theory of Instrument Transformer, extension of range using CT & PT and its applications	9
	Total	45

Course Outcome:

CO-1 To develop an understanding of construction and working of different measuring instruments.

CO-2 To develop an understanding of different types of interferences, it's causes and methods for it's reduction.

CO-3 To develop an understanding of construction and working of different AC and DC bridges and it's application.

CO-4 To develop an ability to use measuring instrument, AC and DC bridges for measurement.

CO-5 To develop an understanding of CT & PT and it's application.

Text Books / Reference Books

- 1. Electrical Measurement & Measuring Instruments by Golding
- 2. Instrumentation Devices and Systems by Rangan
- 3. Electronic Instrumentation & Measurement Technique by W.D. Cooper
- 4. Electrical and Electronics Measurement & Instrumentation by A.K. Sawhney.
- 5. Measurement System Application and Design E.O. Doeblin McGraw Hill
- 6. Instrumentation for Engineering Measurements Dalley Railey, Mc Connel John Wiley & Sons
- 7. Electrical Instrumentation H. S. Kalsi Tata McGraw Hill Education Pvt. Ltd. 2nd revised

IV Semester B.E. Electrical Engineering, With Choice Based Credit System

Course code: 4BEEE05

Title of Course: Electro Magnetic Fields

Course Scheme				Course Scheme Evaluation Scheme (Theory)					
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of	MSE	IE	ESE	Total
					paper, hrs				
03			03	03	3	10	10	80	100

Unit	Contents	Hours
UNIT I	Vector Analysis and Coulomb's Law Vector analysis: Idea of vector & scalars, vector algebra, vector addition, vector subtraction, dot product, scalar product in Cartesian co-coordinator system, conversion of variables from Cartesian to cylindrical system and vice-versa. Spherical co-ordinate system, transformation of Cartesian to spherical and vice versa.	09
UNIT II	Coulomb's law, Volume Charge Density Static Electric field, Electric Field Intensity and density: field of 'n' point charges, field due to continuous volume charge distribution, field of line charge, field of sheet charge. Introduction and application of Gauss law, divergence theorem.	09
UNIT III	Energy and Potential Energy: Expended in moving a point charge in an electric field. Line Integral. Potential: Potential difference and potential, potential field of a point charge, Potential gradient, Energy Density in Electrostatic Field, Dipole and Dipole Moment.	09
UNIT IV	Conductors, Dielectric and Capacitance and Poisson's and Laplace Equation Conductors : Current & Current Density, Continuity of Current , Metallic Conductors, Conductor Properties and Boundary Conditions, Nature of Dielectric Materials.Capacitance: Capacitance Capacitance of Parallel Plate Capacitor, Capacitance of Two Wire Line, Poisson's and Laplace's Equations. Uniqueness Theorem and different Examples.	09
UNIT V	Steady Magnetic, Time Varying fields & Uniform Plane Waves Steady Magnetic fields : Biot Savert's law, Ampere's circuital law, Curl, Strokes Theorem, Magneticflux And Magnetic Flux Density, Scalar & Vector magnetic potential . Time Varying Fields : Maxwell's equations: Faraday's Law, Displacement Current and density. U P W: Elementary Idea of electromagnetic waves, Uniform Plane Waves.	09
	Total	45

Course Outcome:

CO-1 Apply vector calculus to static electric-magnetic fields in different engineering situations

CO-2 Solve the problems in different EM fields in different coordinate system using vector mathematics

CO-3 Estimate electric and magnetic field intensity and densities of different shape of field in three dimension.

CO-4 Understand and analyze Maxwell's equation in different forms (differential and integral) and apply them to diverse engineering problems.

CO-5 Describe and analyze electromagnetic wave propagation in free-space

Text Books / Reference Books

1) Hayt W.H : Engineering Electromagnetics, Macgrawhills Education 2017

2) TVS Arun Murthy: Electromsgnetic Fields

3) Joseph A Edminister: Theory and problem of Electromagnetic with Maths. 2nd Edition Macgrawhills

4) G. S. N. Raju: Electromagnetic Field Theory and Transmission Lines, Pearson. 2006

5) S. Baskaran and K. Malathi: Electromagnetic Field and Waves, Scitech Pub. 2013

6) R. S. Kshetrimayum, Electromagnetic Field Theory, Cengage Learning. 2012

7) J. D. Kraus: Electromagnetic. 5th edition, MGH. 1999