Fifth Semester B.E. (Civil Engineering)

Course Code: Title of the Course:

PEC-CE501 CONSTRUCTION PROJECT PLANNING AND SYSTEM: Theory

Course Scheme				Evalua	ation Scl	neme	(Theory	/)	
Lecture	Tutorial Practical Periods/Week Credits				Duration	MSE	IE	ESE	Total
					of Paper				
					Hr.				
3	1	0	4	2	3 hrs	10	10	80	100

Unit	CONTENTS	Hours
Unit 1	Introduction: Importance of Building drawing as Engineer's Language in	9 Hrs
	construction & costing. Introduction of Designing of Buildings. Site	
	requirements, requirements of owner and Building byelaws. Climate and design	
	consideration, orientation, recommendations of CBRI, Roorki and general	
	principles of planning with emphasis on functional planning. Free hand	
	dimensioned sketches of various building elements. Importance in Civil	
	Engineering.	
Unit 2	Method of Drawing :Selection of scales for various drawings, Thickness of	9 Hrs
	lines, Dimensioning, Combined First angle and Third angle method of	
	projection, Abbreviations and conventional representations as per IS 1962.(ii-a	
) Developing working drawings to scale as per I. S. 962 form the given sketch	
	design and general specifications for terraced and pitched roofs.(ii-b)	
	Developing submission drawings to scale with location site and block plan	
II.:: 4 2	complete.	0 II.
Unit 3	Definition of Projects; Stages of project planning: pre-tender planning, pre-	9 Hrs
	construction planning, detailed construction planning, role of client and	
	contractor. Process of development of plans and schedules, work break-down structure, activity lists, assessment of work content, concept of	
	productivities, estimating durations, sequence of activities, activity utility data.	
Unit 4	Construction Methods for various types of Structures; Major	9 Hrs
Unit 4	Construction equipment; Automation & Robotics in Construction; Manpower:	91115
	planning, organizing, staffing, motivation. Materials: concepts of planning,	
	procurement and inventory control; Equipment: basic concepts of planning, and	
	organizing	
Unit 5	Project Monitoring & Control- Supervision, record keeping, periodic progress	9 Hrs
	reports, periodical progress meetings.	
	Quality control: concept of quality, quality of constructed structure, use of	
	manuals and checklists for quality control, role of inspection, basics of	
	statistical quality control.	
	Safety, Health and Environment on project sites: accidents; their causes, effects	
	and preventive measures, costs of accidents, occupational health problems in	

construction, organizing for safety and neurin.	C	construction, organizing for safety and health.	
---	---	---	--

- 1. Planning and designing of residential buildings-Y N Raja Rao and Y Subramanyam-Standards publishers distributors.
- 2. Building Drawing-Shah M H, Kale C M.-Tata McGraw Hill publications
- 3. Building Construction-Rangawala S C-Charotar publications
- 4. IS962 Code for practice for architectural and building drawings
- 5. IS 10714Part25-Technical Drawings-General principles of presentation.

Fifth Semester B.E. (Civil Engineering)

Course Code: Title of the Course:

PEC-CE507 CONSTRUCTION PROJECT PLANNING AND SYSTEM: Laboratory

	С	ourse Scheme	Evaluation	n Scheme (Lab	oratory)		
Lecture	Tutorial	Practical	Credits	TW POE Tot			
0	0	2	1	25	25	50	

LIST	OF EXPERIMENTS :
1	free hand self-explanatory dimensioned sketches of various building, types of lines
	etc.
2	Development of plans for residential building, with load beam structure with location
	plan, site plan and block plan etc.
3	Developing submission drawings for single story residential building flat roof framed
	structure with access to terrace with location plan, site plan and block plan.
4	Graph paper design (line plans) based on various requirements for public buildings
	like hospital / hostel /bank/library etc.(Any two)
5	Graph paper design (line plans) based on various requirements for shopping complex
	/primary school building, industrial building etc.
6	Two point perspective of the single storied Residential building neglecting small
	building elements. (Pitched roof / flat roof) (Any one)
7	Tracing of sheet of any one drawing sheet
8	Preparation of construction activity lists for small project along-with assessment of
	work content and sequence of activities estimating durations.
9	Preparation of material requirement lists along-withprocurement and inventory
	control sheets.
10	Preparation of quality tests list of required material for small construction project as
	per Indian Standards.

Fifth Semester B.E. (Civil Engineering)

Course Code:OEC-CE 502Title of the Course:Human Resources Development and Organizational
Behavior: Theory

Course Scheme				Evalua	ation Scl	heme	(Theory	y)	
Lecture	Tutorial	Tutorial Practical Periods/Week Credits				MSE	IE	ESE	Total
					of Paper				
					Hr.				
3	1	0	4	2	3 hrs	10	10	80	100

Unit	CONTENTS	Hours				
Unit 1	Introduction to HR	9 Hrs				
	Human Resource Management - Concept, Scope and Importance,					
	Interdisciplinary Approach Relationship with other Sciences, Competencies of					
	HR Manager, HRM functions					
	Human resource development (HRD) - changing role of HRM - Human					
	resource Planning, Technological change, Restructuring and rightsizing,					
	Empowerment, TQM, Managing ethical issues					
Unit 2	Organizational Behavior (OB) - Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and	9 Hrs				
	Contemporary issues					
	Personality - Meaning and Determinants of Personality, Personality					
	development, Personality Types, Assessment of Personality Traits for					
	Increasing Self Awareness					
	Perception: Attitude and Value, Effect of perception on Individual Decision-					
	making, Attitude and Behavior					
	Motivation - Theories of Motivation and their Applications for Behavioral					
	Change (Maslow, Herzberg, McGregor)					
	Group Behavior and Group Dynamics - Work groups formal and informal					
	groups and stages of group development, Team Effectiveness: High performing					
Unit 3	teams, Team Roles, cross functional and self-directed team. Organizational Structure &Design	7 Hrs				
Unit 5	Structure, size, technology, Environment of organization; Organizational Roles	/ 1115				
	& conflicts: Concept of roles; role dynamics; role conflicts and stress.					
	Leadership: Concepts and skills of leadership, Leadership and managerial roles,					
	Leadership styles and contemporary issues in leadership.					
	Power and Politics: Sources and uses of power; Politics at workplace, Tactics					
	and strategies.					
Unit 4	Human resource Planning	7 Hrs				
	Recruitment and Selection process, Job-enrichment, Empowerment – Job	~				
	Satisfaction, employee morale					
	Performance Appraisal Systems: Traditional & modern methods, Performance					

	Counseling, Career Planning	
	Training & Development: Identification of Training Needs, Training Methods	
Unit 5	HR & MIS –	9 Hrs
	Need, purpose, objective and role of information system in HR, Applications in	
	HRD in various industries (e.g. manufacturing R&D, Public Transport,	
	Hospitals, Hotels and service industries Strategic HRM: Role of Strategic HRM	
	in the modern business world, Concept of Strategy, Strategic Management	
	Process, Approaches to Strategic Decision Making;	
	Strategic Intent - Corporate Mission, Vision, Objectives and Goals Labor Laws	
	& Industrial Relations: Evolution of IR, IR issues in organizations, Overview	
	of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and	
	Establishments Act	

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Fifth Semester B.E. (Civil Engineering)

Course Code:PCC-CE 503Title of the Course:TRANSPORTATION ENGINEERING I: Theory

Course Scheme					Evalua	ation Scl	heme	(Theory	y)
Lecture	Tutorial	'utorial Practical Periods/Week Credits				MSE	IE	ESE	Total
					of Paper				
					Hr.				
3	1	0	4	3	3 hrs	10	10	80	100

Unit	CONTENTS	Hours
Unit 1	Development and Planning - Road transport Characteristic, Classification of	9 Hrs
	roads, development plans, network patterns, data collection and surveys,	
	principles of alignment, evaluation of plan proposals.	
	Traffic Engineering:3E's of, traffic characteristics, Surveys, Intersection-type,	
	layouts, design principles, Urban traffic, parking, lighting, Accidents, Traffic	
	control Devices-marking, Sign, Signals, Regulation Motor Vehicle Act and rule	
Unit 2	Geometric Design - Road , road user & road vehicle characteristics, Factors	9 Hrs
	affecting design standards. Cross Section elements, stopping & overtaking sight	
	distance overtaking zones. Horizontal alignment -Curves, design of super	
	elevation, widening, transition curves, vertical alignments, Design of summit &	
	Valley Curves, I.R. C. standards for Geometric Design, Geometric, Geometrics	
	of Hill Roads. Types of pavements.	
Unit 3	Materials: Subgrade Soil - AASHO Classification, group Index, Subgrade soil	9 Hrs
	Stabilization. CBR, aggregates physical and mechanical properties & tests	
	Bituminous materials - classification sources properties and tests. Cutback &	
	Emulsions, IRC/IS standards, Introduction to Geotextiles	
	Construction & Maintenance: IRC, most specifications for quality &quantity	
	highway construction and maintenance of earthen / gravel road, WBM and	
	WMM, Bituminous pavement, cement concrete pavement, pavement failures.	
Unit 4	General: Components, classification and Identification, Data Collection site	9 Hrs
	Selection. Economic Span.	
	Hydrology: Estimation of flood, discharge, water way, scour depth, depth of	
	Foundation, Afflux, clearance and free board.	
	Loads, Forces, Stresses – IRC Specification & code of practices, critical	
	Combinations.	
	Sub-Structure – (A)Types of foundations & their choice, estimation of BC of	
	foundation strata, Open, pile and well foundation, pneumatic Caissons,	
	cofferdams.	
I Init 5	(B)Abutment, piers & Wing-walls and their types, general design principles.	0 Has
Unit 5	Super Structure – Different structural forms culverts, causeways, minor and	9 Hrs
	major bridges, suitability and choice, precast, post tensioned and segmental	
	Construction. Launching, operation systems, Bearings, Architecture.	

Rating and Maintenance – Methods & Techniques of rating of existing bridges	
Inspection, Repairs, maintenance, corrosion-causes and prevention, Aesthetics.	

- 1. Highway Engineering Khanna and Justo Nem Chand
- 2. Bridge Engineering by S.P.BrindraDhanpat Rai Publication
- 3. Bridge Engineering by S.C.RangwalaCharotar Publishing House Ptv
- 4. Principles and practices of Highway Engineering by S.K. Sharma Khanna Publication
- 5. Pavement Design : Yoder and Witzak Wiley
- 6. Traffic Engineering :L.R.Kadiyali Khanna Publishers

Fifth Semester B.E. (Civil Engineering)

Course Code: PEC-CE509 Title of the Course: TRANSPORTATION ENGINEERING I: Laboratory Course Scheme Evaluation Scheme (Laboratory) Tutorial Practical Credits TW POE Total Lecture 25 25 50 0 0 2 1

LIST OF	EXPERIMENTS :
1	1Sub grade soil : CBR test
2	Sub grade soil : AASHO Classification (grouter index)
3	Aggregates: crushing value test, Los Angeles abrasion value test, shape test.
	(Elongation index, flakiness index) and Soundness test and Water absorption test
4	Sieve analysis of aggregates for GSB, WBM, WMM
5	Bitumen: Softening point test.
6	Bitumen : Flash and fire point test
7	Bitumen : Specific gravity
8	Bitumen : Adhesion Test.
9	Bitumen : Penetration value
10	Bitumen : Ductility Test
11	Short Field Visit

Fifth Semester B.E. (Civil Engineering)

Course Code: Title of the Course:

PCC-CE 504 STRUCTURAL ANALYSIS – I Theory

	Course Scheme				Evaluation Scheme (Theory)				y)
Lecture	Tutorial	Practical	Periods/Week	Credits	Duration	MSE	IE	ESE	Total
					of Paper				
					Hr.				
3	1	0	4	3	3 hrs	10	10	80	100

Unit	CONTENTS	Hours
Unit 1	Analysis of fixed and continuous beams by theorem of three moments, effect of	9 Hrs
	sinking of support. Slope deflection method as applied to indeterminate beams	
	& continuous beams, portal frames, frame with inclined legs up to 3 degrees of	
	indeterminacy	
Unit 2	Analysis of continuous beams and simple portal frames (Non sway) using	9 Hrs
	Moment Distribution methods.	
Unit 3	Rolling loads on simply supported beams, concentrated and uniformly	9 Hrs
	distributed loads, maximum B.M. and S.F. Influence lines for reactions,	
	bending moments and shear forces in simply supported beams, cantilevers and	
	beams with overhangs. Influence lines for forces in members of simple trusses.	
Unit 4	Strain energy method as applied to the analysis of redundant frames and	9 Hrs
	redundant trusses up to two degrees of freedoms. Determination of deflection	
	of trusses. Willet Mohr diagram, Castiglione theorems, Maxwell's Betties	
	reciprocal theorem.	
Unit 5	Buckling of Columns and Beams columns, Euler's and Rankin's formula.	9 Hrs
	Analysis of Two- Hinged arches, S.F., B. M. and axial thrust, Parabolic arches.	

- 1. Comprehensive structural analysis by A.K. Jain, Laxmi publication
- 2. Theory of structure by S. RamamruthamDhanpat Rai Publication, 1993
- 3. Basic structural analysis By C. S. Reddy Mc Grew Hill Publication
- 4. Structural Analysis by Vazirani and Ratwani, Khanna Publication
- 5. Theory of structure by R.S. Khurmi S. Chand Publication
- 6. Analysis of structures by Timoshenko & Young, McGraw-Hill Publication, 1965

Fifth Semester B.E. (Civil Engineering)

Course Code: Title of the Course:

PCC-CE 505 SURVEY II –Theory

	Course Scheme				Evaluation Scheme (Theory)				/)
Lecture	Tutorial	Practical	Periods/Week	Credits	Duration of Paper Hr.	MSE	IE	ESE	Total
3	1	0	4	3	3 hrs	10	10	80	100

Unit	CONTENTS	Hours						
Unit 1	CURVES - Simple Compound, Reverse Curves, Vertical Curves. Simple	13						
	Curves : Elements of simple curves, methods of curve ranging, obstacles in H							
	setting out curves. Compound Curves : Elements of compound Curves, setting							
	out the curve. Reverse Curves : Elements of reverse Curves, setting out the							
	curve. Vertical Curves: Elements of vertical curves, types, tangent correction,							
	location of highest or lowest point. Transition Curves: Elements of transition							
	curves, superelevation, length of transition curve, Ideal transition curve,							
	characteristics of transition curve, setting out the transition curve.							
Unit 2	Field Astronomy: Introduction & Instruments & purpose, Astronomical terms,	6 Hrs						
	Time & conversion of time, Abbreviations, Determination of azimuth , Latitude							
	and longitude & Examples of azimuth, Latitude and longitude							
Unit 3	ASTRONOMICAL SURVEYING Celestial sphere -Astronomical terms and	11						
	definitions - Motion of sun and stars -Apparent altitude and corrections -	Hrs						
	Celestial co-ordinate systems -Different time systems -Nautical almanac -Star							
	constellations -Practical astronomy - Field observations and calculations for							
	azimuth.							
Unit 4	Hydrographic Surveying -Tides -MSL -Sounding methods - Location of	9 Hrs						
	soundings and methods -Three point problem -Strength of fix -Sextants and							
	station pointer -River surveys -Measurement of current and discharge -							
	Cartography - Cartographic concepts and techniques -Cadastral surveying -							
	Definition -Uses – Legal values -Scales and accuracies.							
Unit 5	Theory of Errors : Introduction, types of errors, definitions, laws of accidental	7 Hrs						
	errors, laws of weights, theory of least squares, rules for giving weights and							
	distribution of errors to the field observations, determination of the most							
	probable values of quantities.							

- 1. Surveying Vol. I, II and III by Dr. B.C. Punamia, Laxmi Publishers. New Delhi
- 2. Surveying and Levelling Vol. I and II by T.P Kanetkar and S.V Kulkarni, Pune VidhyarthiGruh
- 3. Surveying Vol. I, II and III by Dr. K.R. Arora, Standard Book House. New Delhi
- 4. Surveying Vol. I and II by S. K. Duggal, Tata Mcgraw Hill, New Delhi
- 5. Surveying and Levelling by N.N. Basak, Tata Mcgraw Hill, New Delhi

- 6. Surveying and Levelling by R. Agor, Khanna Publishers, New Delhi
- 7. Advanced Surveying by R. Agor, Khanna Publishers, New Delhi
- 8. Fundamentals of Surveying by Roy, S.K., Prentice Hall India, New Delhi
- 9. Surveying and Leveling by Subramanian, R., Oxford University Press, New Delhi
- 10. Remote Sensing and GIS by B Bhatia, Oxford University Press, New Delhi.
- 11. Remote sensing and Image interpretation by T.M Lillesand, R.W Kiefer, and J.W Chipman, 5th edition, John Wiley and Sons India
- 12. Surveying theory and practice 7th Edition by James M Anderson and Adward M Mikhail Tata McGraw Hill Publication.

Fifth Semester B.E. (Civil Engineering)

Course Code: PCC-CE508 Title of the Course: SURVEY II: Laboratory Evaluation Scheme (Laboratory) Course Scheme Practical Tutorial Credits TW POE Total Lecture 50 25 25 0 0 2 1

LIST C	F EXPERIMENTS: Any 8
1	Setting out simple circular curve by linear method.
2	Setting out simple circular curve by angular method.
3	Setting out the compound curve.
4	Setting out the transition curve.
5	Setting out super-elevation.
6	Determination of True North by astronomical survey.
7	Determination of Latitude and longitude.
8	Solution of examples on theory of errors.
9	Solution of examples on theory of errors.
10	Study of Hydrographic Surveying equipment.

Fifth Semester B.E. (Civil Engineering)

Course Code: Title of the Course:

PCC-CE 506 DESIGN OF RCC STRUCTURES - I: Theory

	Course Scheme				Evaluation Scheme (Theory)				
Lecture	Tutorial	Practical	Periods/Week	Credits	Duration	MSE	IE	ESE	Total
					of Paper				
					Hr.				
3	1	0	4	4	4hrs	10	10	80	100

Unit	CONTENTS	Hours						
Unit 1	Introduction to the Working Stress Method of RCC design. Basic concepts in a	8 Hrs						
	Design for flexure, assumptions, design constants Analysis of the rectangular							
	Section, Balance, under-reinforced and over-reinforced sections. Drawbacks							
	and limitations of Working stress method, shear reinforcement.							
	Design of singly reinforced, doubly reinforced beam and T-beam by WSM.							
Unit 2	Introduction to Limit State Design: Concept of probabilistic design and limit	8 Hrs						
	State design. Characteristic values, partial safety factors, stress strain							
	Relationship stress block parameters, failure criteria, types and properties of							
	Reinforcement, limit state of serviceability and limit state of collapse. Other							
	Limit states. Review of IS – 456-2000.							
	Limit state of Collapse in Shear & Bond: Design of beam for shear, shear Span,							
	post cracking resistance, shear mechanism approach, shear failure modes and							
	collapse loads, interaction of shear, flexure and axial force, Check for							
	development length Limit state of collapse in flexure: Analysis and design of							
	singly reinforced Rectangular section. Doubly reinforced rectangular section .							
	Balance failure mode, primary tension failure mode and Primary compression							
	failure mode							
Unit 3	Limit state of Collapse in Flexure - Analysis & Design of the Tee & L-beam	12						
	Section. Limit state of collapse in compression: Analysis & design of short	Hrs						
	axially Loaded column. Columns subjected to uniaxial bending, development							
	and use of interaction Curves. Unsupported length, End condition. Introduction							
	to long columns.							
	Limit state of Serviceability							
	(i) Causes and control of cracking: Crack in plastic concrete at early age,							
	Cracks due to temperature and shrinkage, restrain induced Cracks, Cracks due							
	to loading. Needs for crack width control.							
	(ii) Moment curvature relationship; deflection control of beams and One Way							
	slabs. (no numerical calculation)							
	(iii) Deflection control, calculation of deflection for simply supported beams							
TTe: 4	acceptance criteria need of deflection control.	10						
Unit 4	Working Stress Method - Design of circular water tank with roof slab/ dome	10 11m						
	resting on ground by Approximate methods/ IS code method.	Hrs						

	Design of rectangular water tank with one-way roof slab resting on ground by Approximate method/IS code method.	
	Design of prestressed slab/ rectangular beam. Prestressed Concrete :Properties of high grade materials, concepts of Prestressed concrete, methods of prestressing, losses in prestressing. Various systems for prestressing with particular reference to FreyssinedMagnelBlatton and Fifford Udall systems.	
	Analysis of rectangular, T and I Section.	
Unit 5	Limit Stress Method - Design of one-way, simply supported, single span and	7 Hrs
	cantilever slabs, and Continues slab/ beam with IS coefficients.	
	Design of rectangular pad/ slopped footing for axial load.	
	Design of Dog-legged and open well staircases	

- 1. Reinforced concrete structures- S.N.Sinha
- 2. Limit State Design of RCC Structuresby A.K. Jain, B.C.Punmiya
- 3. Limit State Design of RCC Strucutres: Based on IS : 800-2007 Ashok K. Jain
- 4. I S 456 2000, I. S. 875 , I. S. 3370 part IV
- 5. IS 1343
- 6. Reinforced Concrete Structures by N. Krishna Raju

Sixth Semester B.E. (Civil Engineering)

Course Code: Title of the Course:

PEC-CE 601 Pavement Design – Theory

	Course Scheme				Evaluation Scheme (Theory)				y)
Lecture	Tutorial	Practical	Periods/Week	Credits	Duration of Paper	MSE	IE	ESE	Total
					Hr.				
3	1	0	4	3	3	10	10	80	100

Unit	CONTENTS	Hours					
Unit 1	General: Pavement design factors, components of flexible and rigid pavement	07					
	and their functions, characteristics of highway and airfield pavement. Design	Hrs					
	parameters: Design wheel load, Standard axle load and wheel assemblies for road vehicles. Under carriage system for aircraft, type and contact pressure, contact area, imprints, computation of ESWL for flexible and rigid pavements.						
	Load repetitions and distributions of traffic for highway and airfield, pavement,						
	airport traffic areas, Serviceability concept.						
Unit 2	Material characteristics: AASHO subgrade soil classification, CBR test, North	09					
	Dakota cone bearing value, plate load test for K-value, modulus of elasticity	Hrs					
	and Poisson's ratio of subgrade soils, Marshall's method of Bituminous mix						
	design, Surface dressing, Premix carpet, Mix seal surfacing, Semi-dense						
	carpet, Asphaltic concrete, Bituminous Macadam Binder course, Dense						
	Bituminous Macadam Binder course, Modulus of rupture, modulus of						
	elasticity, Poisson's ratio and coefficient of thermal expansion of concrete,						
Unit 3	Layer equivalent concepts.	11					
Unit 5	Analysis of flexible and rigid pavements: Stress, strain, deflection analysis one layer system by Boussinesq's, Two, three layer system by Burmister's, and	Hrs					
	multi layered flexible pavement system. Stress and deflections for rigid	1115					
	pavements due to load and temperature, influence charts, ultimate load analysis						
	joints. Highway Pavement Design: Flexible: North Dakota cone, Design using						
	the latest IRC code, Triaxial (Kansas), AASHTO method of design. Rigid:						
	Design using the latest IRC code, PCA, AASHTO method of design, design of						
	joints and reinforcements						
Unit 4	Airfield pavement design: 8 Syllabus –VIII SEM Civil Engineering/ Page 20 a)	8					
	Flexible: FAA, US Corps of engineering, CBR, Mcleod (Canadian) b) Rigid	Hrs					
	:FAA, PCA& LCN, definitions of ACN, PCN, LCN. Calculation of LCN						
	value. Ultimate load analysis and yield lines pattern method.						
Unit 5	Pavement testing and evaluation: field density, CBR, plate load test, Pavement						
	Failures in both Flexible Pavement & Rigid Pavement - types and causes,	10					
	condition surveys and surface evaluation for unevenness, rut depth,	Hrs					
	profilometers, bump integrators, Benkleman beam deflection study.						
	Strengthening of pavements: design of flexible, composite and rigid overlays						

for flexible and rigid pavements, repairs, maintenance and rehabilita	tion of	
pavements.		08
		Hrs

Recommended Books:

1. Principles of Pavement Design by H.J.Yoder and Witczak, John wiley and sons.

2. Highway Engineering by Khanna O.P, Justo C.G., ,Nem Chand Publishers

3. Pavement Analysis and Design by Yang H. Huang 2nd Edition, Pearson Education, Inc., Pearson Prentice Hall Company.

4. Airport Engineering by G VenkatappaRao, Tata McGraw –Hill Publishing Company Ltd.

5. IRC-37(Latest Code))Guide lines for Design of Flexible Pavement

6. IRC -58-(Latest code) Guide lines for Design of Plain Jointed Rigid Pavement for highways

7. MOST Specifications for Road and Bridge Works, 1994 (Third Revision)

Reference Books: a. Airport Engineering by Khanna and Arora, Nemchand& Brothers.

Sixth Semester B.E. (Civil Engineering)

Course Code: Title of the Course:

OEC-CE602 SOFT SKILLS AND INTERPERSONAL COMMUNICATIONS

Course Scheme				Evaluation Scheme (Theory)					
Lecture	Tutorial	Practical	Periods/Week	Credits	Duration	MSE	IE	ESE	Total
					of Paper				
					Hr.				
3	0	0	3	3	3 hrs	10	10	80	100

Unit	CONTENTS	Hours
Unit 1	Soft skills: An Introduction – Definition and significance of soft skills; Process,	9 Hrs
	importance and measurement of soft skill development. Self-discovery -	
	Discovering the self; setting goals, beliefs, values, attitude, virtue. Positivity	
	and motivation - Developing positive thinking and attitude, driving out	
	negativity, meaning and theories of motivation, enhancing motivation level.	
Unit 2	Interpersonal communication – Interpersonal relations, communication models,	9 Hrs
	process and barriers, team communication, developing interpersonal	
	relationship through effective communication, Listening skills, Essential formal	
	writing skill, Corporate communication style- assertion, persuasion, negotiation	
Unit 3	Public speaking - skills, methods, strategies and essential tips for effective	9 Hrs
	public speaking. Teamwork and leadership skills - Concept of teams, building	
	effective teams, concept of leadership and owning leadership skills.	
Unit 4	Interview skills- Interviewer and interviewee - In depth perspective, before,	9 Hrs
	during and after interview, Tips for success. Presentation skill - Types,	
	contents, audience analysis. Time management – Concept essentials, tips.	
Unit 5	Decision making and problem solving skills - Meaning, types and models,	9 Hrs
	group and ethical decision making, problems and dilemmas in application of	
	these skills. Conflict management - Conflict - definition, nature, types and	
	causes; methods of conflict resolution, Stress management	

Reference books:-

- 1. Managing soft skills for personality development edited by B.N.Ghosh, McGraw Hill India, 2012.
- 2. English and soft skills S.P.Dhanavel, Orient Blackswan India, 2010

FACULTY OF SCIENCE AND ENGINEERING

Sixth Semester B.E. (Civil Engineering)

Course Code:OEC-CE602Title of the Course:METRO SYSTEM AND ENGINEERING

	Course Scheme					Evaluation Scheme (Theory)				
Lecture	Tutorial	Practical	Periods/Week	Credits	Duration of Paper Hr.	MSE	IE	ESE	Total	
3	0	0	3	3	3 hrs	10	10	80	100	

Unit	CONTENTS	Hours						
Unit 1	General: Overview of metro system, need for metros, routine studies, basic	9 Hrs						
	planning and financials, Overview of world metro system, Introduction of							
	metro act, Report of ministry of Urban development on standardization of							
	metro system.							
Unit 2	Civil engineering - Overview and construction methods for elevated and	9 Hrs						
	underground stations, viaduct spans and bridges, underground tunnels, depots;							
	Commercial and service building, initial survey and investigations, basic							
	construction planning and management, construction quality and safety system,							
	traffic integration, multi model transfer and pedestrian facilities, environmental							
	and social safe guards, track system - permanent way, facilities management.							
Unit 3	Metro signaling - signaling systems, automatic fare collection, operation	9 Hrs						
	control center and other control systems, platform screen doors							
Unit 4	Mechanical and TV + AC, Rolling stock, vehicle dynamics and structure,	9 Hrs						
	tunnel ventilation system, air conditioning for stations and buildings, fire							
	control system; lifts and escalators							
Unit 5		9 Hrs						
	ASS; power SCADA; Standby and back-up systems; green buildings, carbon							
	credits and clean air mechanics							

Reference books: -

- 1. Urban transit systems and technology by Vukan R. Vuchic
- 2. Metro Rail in India for Urban Mobility Hardcover 1 January 2021 by M. M. Agarwal (Author), Sudhir Chandra (Author), K. K. Miglani (Author)
- 3. Handbook of Research on Emerging Innovations in Rail Transportation Engineering B. Umesh Rai (Chennai Metro Rail Limited, India)
- 4. Railway Transportation Systems Design, Construction and Operation By Christos N. Pyrgidis
- 5. J.D. Fricker, & R.K. Whitford, Fundamentals of Transportation Engineering, Pearson, PH
- 6. J. E. Anderson, Transit Systems Theory, Lexinton Book

FACULTY OF SCIENCE AND ENGINEERING Sixth Semester B.E. (Civil Engineering) PCC-CE 603

Course Code:

Title of the Course:

Estimation and Costing – Theory

Course Scheme				Evaluation Scheme (Theory)					
Lecture	Tutorial	Practical	Periods/Week	Credits	Duration	MSE	IE	ESE	Total
					of Paper				
					Hr.				
3	1	0	4	3	4	10	10	80	100

Unit	CONTENTS	Hours
Unit 1	(a)Importance, purpose of quantity estimate, Mode and unit of measurement as	10
	per I.S.1200. Method and stages of estimates. Item of work and Description of	Hrs
	an item of work. Approximate estimation of Civil Engineering works.	
	(b)Proposal and Development of project, Nature of contract between owner	
	&Architect/Engineer, Duties & liabilities of Architect/Engineer, Architect	
	/Engineers normal professional services, various important terminology	
	required like work charge establishment ,muster roll, contingencies, cent age	
Linit 2	charges, measurement book, overheads etc.	08
Unit 2	Quantity & cost estimates. (a) Methods of detailed estimates, forms used for detailed estimates, working out the quantities of various metarials required for	08 Hrs
	detailed estimates, working out the quantities of various materials required for construction of various Civil Engineering works such as Building, culverts,	піз
	hydraulic structure, water supply & sanitary works, road works, retaining walls	
	, water tanks etc. (b) Earthwork estimates in road (including hill road), canals	
	etc. (c) Detailed estimate of steel in RCC works, bar bending schedule.	
Unit 3	Specifications: Purpose & principles of specifications. Types of specification,	09
	Developing detailed specifications of important items. Cost build up: purpose	Hrs
	& principles, Importance of Current schedule rates (CSR) in cost estimate,	
	factors affecting analysis of rates, information from National building	
	organization. Task work, factors affecting task work, Markets rates escalation.	
Unit 4	Arranging works: P.W.D.as the construction agency, method of carrying out	08
	works, arranging contract works, pretender & contract planning, tender notice,	Hrs
	acceptance of tender, essentials of contract, type of 08 Syllabus -VIII SEM	
	Civil Engineering/ Page 20 contract, conditions of contract, contract	
	documents, various schedules in tender documents, measurement & payment to	
	contractor, Indian contract law, and the Engineering contract, Land acquisition	
Unit 5	act, legal aspects of various contract provisions, arbitration Valuation: purpose of valuation, Factors affecting value of property price &	
Unit J	cost, market value, potential value, sentimental value, scrap value, reversionary	10
	value etc. Real Estate, net & gross return, tenure of land, valuation of land, free	Hrs
	hold & lease hold, sinking fund, depreciation, capitalized value, methods of	1115
	valuation, differed annuity, Time-cost relationship, valuation tables, rent	
	fixation. Cost accounting: various methods classification of cost, direct &	
	indirect charges, distribution of overheads, M.A.S.Account, issue rates & store	
	account	

REFERENCES

1. Estimation & Costing by B.N.Dutta UBS Publications Distribution (P) Ltd.

2. Estimation & Costing (civil) by D.D.Kohli&Ar.R.C.Kohali(S.chand& company pvt.ltd.)

3. Estimating construction costs by Robert L.Peurify&GaroldD.Oberlender, Tata McGraw-Hill

4. Construction Planning & Management by P.S.Gahalot&B.M.Dhir, New Age International (P) Ltd. Publication.

FACULTY OF SCIENCE AND ENGINEERING Sixth Semester B.E. (Civil Engineering) PCC-CE608

Course Code:

Title of t	he Course	e: Est	Estimating and Costing: Laboratory					
Course S	cheme			Evaluation Scheme (Laboratory)				
Lecture	Tutorial	Practical	Credits	TW	POE	Total		
0	0	2	1	25	25	50		

LIST OF	F EXPERIMENTS: Any Eight
1	Detailed building estimate of load bearing structure & framed structure
2	A complete set of contract document including specifications.
3	Detailed estimate of road work.
4	Rate analysis of 10 major item of building
5	Specification of 10 major item of building.
6	Valuation & rate fixing.
7	Calculation of reinforcement in RCC with bar bending schedule.
8	Study of IS-1200 code.
9	Site visit to: Study of schedule of rates & comparison with market rates & report by
	the students.

FACULTY OF SCIENCE AND ENGINEERING Sixth Semester B.E. (Civil Engineering) PCC-CE 604

Course Code:

Title of the Course:

Structural Analysis II – Theory

Course S	Course Scheme				Evaluation Scheme (Theory)				
Lecture	Tutorial	Practical	Periods/Week	Credits	Duration	MSE	IE	ESE	Total
					of Paper				
					Hr.				
3	1	0	4	4	3	10	10	80	100

Unit	CONTENTS	Hours
Unit 1	Kani's Method applied to symmetrical and unsymmetrical frames with sway	08
	(Up to single bay Two story).	Hrs
Unit 2	Moment distribution method applied to sway frames, frame with inclined leg,	12
	gable frames. Approximate method Structural analysis for multi-storeyed	Hrs
	frames with lateral loads(Portal and Cantilever method), Approximate methods	
	for vertical loads i.e.Substitute frame method etc. (Max three bay three storey).	
Unit 3	Column Analogy method, Applications to beams, Calculations of Stiffness	06
	factors and carry Over factors for non-prismatic member, Analysis of non-	Hrs
	prismatic fixed beams.	
Unit 4	a) Introduction to Flexibility Method of structural analysis, compatibility	12
	equations. Hand solution of simple beam problems. Analysis of redundant	Hrs
	frames and trusses upto two DOR. b)Moment distribution applied to frames	
	with sway (upto single storey two bay	
Unit 5	Strain energy method applied to simple composite structures (Simple	
	problems), Introduction to basic theory of elasticity, Concept of stress, strains,	07
	strain displacement Relationship, equation of equilibrium, boundary conditions,	Hrs
	generalized Hooks low, plane Stress and plane strain problems. Theory of	
	photoelasticity applicable to beams. Study of various types of strain gauges,	
	Analyses of strains by strain Guage.	

Text book / refrences

- 1. Theory of structure b.c.punmia and a. K. Jain , laxmi publication
- 2. Theory of structure s. Ramamrutham ,Dhanpathi Rai publication
- 3. Theory of elasticity- s.p.timoshanko and j.n. goodier ,mcgraw hill publication
- 4. Theory of elasticity dr. Sadhu singh ,khanna publication
- 5. Matrix method of structural analysis- gere and wearer ,cbs publication

FACULTY OF SCIENCE AND ENGINEERING Sixth Semester B.E. (Civil Engineering) PCC-CE606 Structural Analysis II: Laboratory

Course Code: Title of the Course:

Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Tutorial	Practical	Credits	TW	POE	Total	
0	0	2	1	25	25	50	

LIST OF	F EXPERIMENTS: Any Ten
1	To find the slope and deflection of the continuous beams.
2	To find the value of flexural rigidity (EI) for a given beam & compare it with
	theoretical value
3	To determine the moment required to produce a given rotation at one end of the beam
	when the other end is (I) pinned (2) fixed.
4	To study the behavior of different types of struts and to calculate the Euler's buckling
	load for each case
5	To verify the Maxwell's reciprocal theorem for beam
6	To measure the strain in the cantilever beam with the help of acoustic strain gauge.
7	Study the various types of strain gauges.
8	Plotting the influence lines by making use of Muller Breslau principle.
9	Determination of deflection of trusses by Willot-Mohr's diagram.
10	Determination of material fringe value.
11	Determination of stress in beams by photoelastic method
12	To find horizontal thrust and to draw the influence line for horizontal thrust for two
	hinged arch .
13	To calculate horizontal deflection at roller end in two hinged arch.
14	To measure the strain in the cantilever beam with the help of electrical resistance
	strain gauge.
15	To determine horizontal thrust for indeterminate portal frame
16	Study of Polariscope.

Sixth Semester B.E. (Civil Engineering)

Course Code: Title of the Course:

PCC-CE 605 Design of Steel Structure –Theory

	Course Scheme					Evaluation Scheme (Theory)			
Lecture	Tutorial	Practical	Periods/Week	Credits	Duration	MSE	IE	ESE	Total
					of Paper				
					Hr.				
3	1	0	4	4	4	10	10	80	100

Unit	CONTENTS	Hours
Unit 1	Steel as a structural material, various grades of structural steel properties,	10
	various rolled steel sections (including cold formed sections, structural pipe	Hrs
	(tube) sections) and their properties. Introduction to I. S. 800, 808, 816, 875	
	etc. Design of axially loaded members: (a) Tension members, (b)Compression	
	members Design of roof truss: Load assessment for DL, LL and WL.	
Unit 2	Design of simple and built up beams: Laterally restrained and unrestrained,	10
	(symmetrical as well as unsymmetrical section).Curtailment of flange plates.	Hrs
	Introduction to plastic analysis of simply supported beam, plastic hinges,	
	mechanism shape factors, plastic moments of resistance.	
Unit 3	Design of welded and riveted plate girder, design of various stiffeners, design	10
	of gantry girder. Lattice girder.	Hrs
Unit 4	Design of single rolled steel column section subjected to axial load and uniaxial	7 Hrs
	and biaxial moment Design of axially loaded built up columns. Laced and	
	battened columns for various types of load	
Unit 5	Structural Fasteners:	
	A. Behavior of bolted and welded connections (types, Designations, properties,	05
	permissible stresses), failure of bolted and welded joints. Strength of bolt and	Hrs
	strength of weld. Efficiency of joints. Design of simple bolted and welded	
	connections. Moment resistant bolted and welded connection. (bending and	
	torsion)	
	B. Design of connection: Beam to beam, beam to column : framed connection.	08
	Design of column bases, slab base, gusseted base and grillage foundation base	Hrs
	subjected to eccentric loading	

Reference books:-

Text Books and Reference Books:-

- 1. Limit State Design of Steel Structures by S. K. Duggal
- 2. Limit State Design of Steel Structures by Subramanian
- 3. Limit State Design of Steel Structures by B. C. Punmia, A. K. Jain
- 4. IS 800:2007, Steel tables, IS 875.

Sixth Semester B.E. (Civil Engineering)

Course Code:		PC	PCC-CE607			
Title of the Course: Design of Steel Structure: Laboratory						
Course Scheme				Evaluation Scheme (Laboratory)		
Lecture	Tutorial	Practical	Credits	TW	POE	Total
0	0	2	1	25	25	50

LIST OF EXPERIMENTS: Any Five				
1	Design of simple beam laterally restrained symmetrical section			
2	Design of laterally restrained built up beam symmetrical section			
3	Design of welded plate girder			
4	Design of riveted plate girder			
5	Design of single rolled steel column subjected to axial load			
6	Design of single rolled steel column subjected to biaxial load			
7	Design of axially loaded built up column (Laced)			
8	Design of axially loaded built up column (Battened)			